首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time course for the build-up and decay of birefringence induced by a rectangular voltage pulse was measured on solutions of flagellar filaments from Salmonella equi-abortus (strain SJ25). These filaments are tubular polymers of protein (degree of polymerization ≈ 103) constituted by non-covalent linkage of flagellin monomers of molecular weight 4 × 104. The effect on electro-optical properties of solutions of filaments due to variations in temperature, concentration and mean length of protein filaments, and the duration and intensity of the applied electric field is described. Analysis of the field intensity dependence of the birefringence and comparison of the build-up and decay processes indicate that orientation in the field is due primarily to the existence of a permanent dipole moment in the filaments. At 18 °C the following values were obtained for a solution of filaments with mean length and standard deviation of 0.39 and 0.30 μm: specific Kerr constant (Ksp) = 6.14 × 10−3 electrostatic units; optical anisotropy factor (g1g2) = 5.66 × 10−3; dipole moment (μ) = 1.01 × 105 Debye units; and mean relaxation time (\̄gt) = 9.20 ms. At temperatures below 20 °C there is a marked increase in the optical anisotropy factor of the filaments which may be due to a change in their flexibility. The large values of Ksp obtained indicate the highly responsive nature of these filaments to an electric field. The birefringence decay curves were decomposed by computer into a specified number of exponential terms from which both the mean length and the size distribution of these polydisperse filaments were calculated. The results obtained were in substantial agreement with the values of these parameters observed by electron microscopy. A cumulative field effect dependent on field intensity and filament concentration was observed. Repeated pulsing of electric field, above threshold values of field intensity and filament concentration, produced decreases in the birefringence near 60% of its initial value. The effect was reversible with a time constant greater than two minutes. No appreciable change in the relaxation time for decay of birefringence was observed on multiple pulsing of these solutions. These results are interpreted consistently to arise from the sidewise aggregation of filaments induced by electrical impulses of sufficient intensity and duration. These properties appear relevant to bacterial motility: variations in electric potential along the membrane of the bacterium might serve first to orient these organelles and then to induce their coalescence to “bundles” of filaments. The latter structures are commonly observed in vivo. In this way the activity of flagella might be co-ordinated.  相似文献   

2.
When an electric field is applied along the fiber axis, the intensities of all observable optical diffraction lines of skeletal muscle fibers increase. This electro-optical effect was extensively studied and it was confirmed that the effect is due to the interaction between electric dipole moments of thin filaments and the applied field. From the present study on the intensity modulation due to applied field in sinusoidal and square forms, we confirmed that (1) the thin filament is a semiflexible rod, (2) the second order mode of the bending motion of thin filaments contributes to the electro-optical effect of muscle fibers at higher frequencies of a sinusodidal field or shorter durations of a square field, (3) the induced moment has no appreciable effect, and (4) the estimated value of the flexural rigidity of thin filaments strongly depends on the concentrations of free calcium ions in the myofibrillar space.  相似文献   

3.
We have examined a variety of invertebrate and vertebrate musclesin the electron microscope and have seen evidence of a third,very thin (25 Ä) filament in all of them. This filamenthas been seen in H zones, A bands, and I bands, as well as bridgingthe gap between actin and myosin filaments in greatly stretchedmuscle. It, thus, seems likely that, if a third filament exists,it is elastic and extends throughout the sarcomere from Z discto Z disc, unlike the hypothetical actin-actin(s) filament ofHanson and Huxley (1955), or the actinmyosin gap filaments ofSjostrand (1962) and Carlsen, et al. (1965). These filaments therefore provide an answer to some of the presentparadoxes of muscle ultrastructure.  相似文献   

4.
In 2017, a Special Issue of Biophysical Reviews was devoted to “Titin and Its Binding Partners. The issue contained a review: “An historical perspective of the discovery of titin filaments” by dos Remedios and Gilmour that was intended to be a history of the discovery of the giant protein titin, previously named connectin. The review took readers back to the earliest discovery of the so-called third filament component of skeletal and cardiac muscle sarcomeres and ended in 1969. Recently, my colleague Shin’ichi Ishiwata gently reminded me of two papers published in 1990 and 1993 that were unwittingly omitted from the original historical perspective. In the first paper (J Cell Biol 110:53–62, 1990), Funatsu et al. examined the elastic filaments in skeletal muscle using a combination of light and electron microscopy, but they also measured resting as well as passive stiffness mechanical measurements to establish that connectin (titin) is responsible for both stiffness and fiber tension. In the second paper (J Cell Biol 120:711–724, 1993), Funatsu et al. used permeabilised cardiac muscle myocytes (from rabbit papillary muscles) and focussed on filament ultrastructure using either freeze-substitution or deep-etched replica methods to visualise connectin/titin filaments in fibers with and without actin and myosin filaments.  相似文献   

5.

Background

Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements.

Methodology/Principal Findings

We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria.

Conclusions/Significance

Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.  相似文献   

6.
Passive stretch, isometric contraction, and shortening were studied in electron micrographs of striated, non-glycerinated frog muscle fibers. The artifacts due to the different steps of preparation were evaluated by comparing sarcomere length and fiber diameter before, during, and after fixation and after sectioning. Tension and length were recorded in the resting and contracted fiber before and during fixation. The I filaments could be traced to enter the A band between the A filaments on both sides of the I band, creating a zone of overlap which decreased linearly with stretch and increased with shortening. This is consistent with a sliding filament model. The decrease in the length of the A and I filaments during isometric contraction and the finding that fibers stretched to a sarcomere length of 3.7 µ still developed 30 per cent of the maximum tetanic tension could not be explained in terms of the sliding filament model. Shortening of the sarcomeres near the myotendinous junctions which still have overlap could account for only one-sixth of this tension, indicating that even those sarcomeres stretched to such a degree that there is a gap between A and I filaments are activated during isometric contraction (increase in stiffness). Shortening, too, was associated with changes in filament length. The diameter of A filaments remained unaltered with stretch and with isometric contraction. Shortening of 50 per cent was associated with a 13 per cent increase in A filament diameter. The area occupied by the fibrils and by the interfibrillar space increased with shortening, indicating a 20 per cent reduction in the volume of the fibrils when shortening amounted to 40 per cent.  相似文献   

7.
Cofilin increases the torsional flexibility and dynamics of actin filaments   总被引:1,自引:0,他引:1  
We have measured the effects of cofilin on the conformation and dynamics of actin filaments labeled at Cys374 with erythrosin-iodoacetemide (ErIA), using time-resolved phosphorescence anisotropy (TPA). Cofilin quenches the phosphorescence intensity of actin-bound ErIA, indicating that binding changes the local environment of the probe. The cofilin concentration-dependence of the phosphorescence intensity is sigmoidal, consistent with cooperative actin filament binding. Model-independent analysis of the anisotropies indicates that cofilin increases the rates of the microsecond rotational motions of actin. In contrast to the reduction in phosphorescence intensity, the changes in the rates of rotational motions display non-nearest-neighbor cooperative interactions and saturate at substoichiometric cofilin binding densities. Detailed analysis of the TPA decays indicates that cofilin decreases the torsional rigidity (C) of actin, increasing the thermally driven root-mean-square torsional angle between adjacent filament subunits from approximately 4 degrees (C = 2.30 x 10(-27) Nm2 radian(-1)) to approximately 17 degrees (C = 0.13 x 10(-27) Nm2 radian(-1)) at 25 degrees C. We favor a mechanism in which cofilin binding shifts the equilibrium between thermal ErIA-actin filament conformers, and facilitates two distinct structural changes in actin. One is local in nature, which affects the structure of actin's C terminus and is likely to mediate nearest-neighbor cooperative binding and filament severing. The second is a change in the internal dynamics of actin, which displays non-nearest-neighbor cooperativity and increases the torsional flexibility of filaments. The long-range effects of cofilin on the torsional dynamics of actin may accelerate P(i) release from filaments and modulate interactions with other regulatory actin filament binding proteins.  相似文献   

8.
The organization and polarity of actin filaments in neuronal growth cones was studied with negative stain and freeze-etch EM using a permeabilization protocol that caused little detectable change in morphology when cultured nerve growth cones were observed by video-enhanced differential interference contrast microscopy. The lamellipodial actin cytoskeleton was composed of two distinct subpopulations: a population of 40-100-nm-wide filament bundles radiated from the leading edge, and a second population of branching short filaments filled the volume between the dorsal and ventral membrane surfaces. Together, the two populations formed the three-dimensional structural network seen within expanding lamellipodia. Interaction of the actin filaments with the ventral membrane surface occurred along the length of the filaments via membrane associated proteins. The long bundled filament population was primarily involved in these interactions. The filament tips of either population appeared to interact with the membrane only at the leading edge; this interaction was mediated by a globular Triton-insoluble material. Actin filament polarity was determined by decoration with myosin S1 or heavy meromyosin. Previous reports have suggested that the polarity of the actin filaments in motile cells is uniform, with the barbed ends toward the leading edge. We observed that the actin filament polarity within growth cone lamellipodia is not uniform; although the predominant orientation was with the barbed end toward the leading edge (47-56%), 22-25% of the filaments had the opposite orientation with their pointed ends toward the leading edge, and 19-31% ran parallel to the leading edge. The two actin filament populations display distinct polarity profiles: the longer filaments appear to be oriented predominantly with their barbed ends toward the leading edge, whereas the short filaments appear to be randomly oriented. The different length, organization and polarity of the two filament populations suggest that they differ in stability and function. The population of bundled long filaments, which appeared to be more ventrally located and in contact with membrane proteins, may be more stable than the population of short branched filaments. The location, organization, and polarity of the long bundled filaments suggest that they may be necessary for the expansion of lamellipodia and for the production of tension mediated by receptors to substrate adhesion molecules.  相似文献   

9.
10.
When the sliding filament hypothesis was proposed in 1953-1954, existing evidence showed that (1) contributions to tension were given by active sites uniformly distributed within each zone of filament overlap and (2) each site functioned cyclically. These sites were identified by electron microscopy as cross-bridges between the two filaments, formed of the heads of myosin molecules projecting from a thick filament and attaching to a thin filament. The angle of these cross-bridges was found to be different at rest and in rigor, suggesting that the event causing relative motion of the filaments was a change of the angle of the cross-bridges. At first, it seemed likely that the whole cross-bridge rotated about its attachment to actin, but when the atomic structures of actin and myosin were obtained by X-ray crystallography, a possible hinge was found between the "catalytic domain" which attaches to the actin filament and the "light-chain domain" which appears to act as a lever arm. Two attitudes of the lever arm are now well established, the transition between them being driven by a conformational change coupled to some step in the hydrolysis of ATP, but several recent observations suggest that this is not the whole story: a third attitude has been shown by X-ray crystallography; a non-muscle myosin has been shown to produce its working stroke in two steps; and there are suggestions that an additional displacement of the filaments is produced by a change in the attitude of the catalytic domain on the thin filament.  相似文献   

11.
Thick filaments can move from the center of the sarcomere to the Z-disc while the isometric tension remains stable in skinned rabbit psoas fibers activated for several minutes (Horowits and Podolsky, 1987). Using the active and resting tension-length relations and the force-velocity relation, we calculated the time course and mechanical consequences of thick filament movement in the presence and absence of the elastic titin filaments, which link the ends of the thick filaments to the Z-discs and give rise to the resting tension. The calculated time course of thick filament movement exhibits a lag phase, during which the velocity and extent of movement are extremely small. This lag phase is dependent only on the properties of the cross-bridges and the initial position of the thick filament. The time course of thick filament movement in skinned rabbit psoas fibers at 7 degrees C is well fit assuming a small initial thick filament displacement away from the center of the sarcomere; this leads to a lag of approximately 80 s before any significant thick filament movement occurs. In the model incorporating titin filaments, this lag is followed by a phase of slow, steady motion during which isometric tension is stable. The model excluding titin filaments predicts a phase of acceleration accompanied by a 50% decrease in tension. The observed time course of movement and tension are consistent with the model incorporating titin filaments. The long lag phase suggests that in vivo, significant movement of thick filaments is unlikely to occur during a single contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
JGP microscopy study supports the idea that the region linking myosin head and tail domains can be peeled away from filament backbone to prevent actin-attached heads from impeding filament movement.

Myosin II motors move along actin filaments by coupling cycles of ATP binding and hydrolysis to a repetitive process in which the myosin head domains attach to actin, undergo a conformational shift/powerstroke, and then detach. In muscle cells, myosin II molecules assemble into thick filaments containing hundreds of head domains, and any heads that remain attached to actin after completing their power stroke may impede the ability of other heads to move the filament and drive muscle contraction. In this issue of JGP, Brizendine et al. provide direct evidence that this potential drag on filament movement is limited by the flexibility of myosin II’s S2 subdomain (1).(Left to right) Richard Brizendine, Christine Cremo, and Murali Anuganti provide direct evidence that the S2 domain of myosin II is a flexible structure, which would allow it to prevent actin-attached heads from impeding the movement of myosin filaments. Quantum dots labeling a head domain (black) and the filament backbone (red) mostly follow the same trajectory as a filament moves in vitro. But, in rare instances (insets), an actin-attached head briefly lags the backbone’s trajectory before catching up, an event facilitated by the flexibility of the S2 region that connects the motor protein’s head and tail domains.For the past few years, Christine Cremo and colleagues at the University of Nevada, Reno, have been studying the kinetics of filament movement using fluorescently labeled myosin and actin filaments in vitro (2). Based on their data, Cremo’s team, in collaboration with Josh Baker, developed a mixed kinetic model that predicted a key mechanical function for the S2 subdomain of myosin II, which links the motor protein’s head domains to the C-terminal light meromyosin (LMM) domains that mediate filament assembly (3,4). According to the model, the flexibility of the S2 subdomain, and its ability to be peeled away from the filament backbone, provides some slack to actin-attached heads as the filament moves forward, giving them more time to detach before they impede the filament’s progress.“So now we wanted to see if we could directly observe this flexibility,” Cremo explains. To do this, two postdocs in Cremo’s laboratory, Richard Brizendine and Murali Anuganti, assembled smooth muscle myosin filaments labeled with two differently colored quantum dots, one attached to the LMM domain and the other attached to the head domain. Most of the time, these two labels should follow the same trajectory along actin filaments in vitro. If the S2 domain is flexible, however, it should be possible to occasionally observe an actin-attached head remain in place while the LMM domain continues moving forward. This brief “dwell” should then be followed by a “jump” as the head domain detaches from actin and catches up with the trajectory of the filament backbone.“We were looking for rare events in a sea of noise,” Cremo says, yet the researchers were able to identify dwells and jumps in the quantum dot trajectories consistent with the predicted flexibility of the S2 domain. The frequency and duration of these events fit the known kinetics of actomyosin motility.Based on their data, Brizendine et al. (1) estimate that, in smooth muscle, a myosin filament can move up to ∼52 nm without being impeded by an actin-attached head, a figure close to that predicted by the mixed kinetic model. To provide this flexibility, the researchers calculate that as much as 26 nm of the S2 domain can be unzipped from the filament backbone. Intriguingly, this matches the maximum length that S2 can be seen to project from thick filaments in tomograms of Drosophila flight muscle (5), and the forces generated by working myosin heads should be more than sufficient to achieve this unzipping.Many cardiomyopathy-associated mutations are located in the S2 region of myosin II. However, the mixed kinetic model predicts that, compared with smooth muscle, myosin filaments in cardiac and skeletal muscle cannot move quite as far without being impeded by actin-attached heads. “What leads to these differences?” Cremo wonders. “Are there differences in the biophysical behavior of the S2 domain in different muscle types?”  相似文献   

13.
Cofilin is an essential actin filament severing protein that accelerates the assembly dynamics and turnover of actin networks by increasing the number of filament ends where subunits add and dissociate. It binds filament subunits stoichiometrically and cooperatively, forming clusters of contiguously-bound cofilin at sub-saturating occupancies. Filaments partially occupied with cofilin sever at boundaries between bare and cofilin-decorated segments. Imaging studies concluded that bound clusters must reach a critical size (Cc) of 13–100 cofilins to sever filaments. In contrast, structural and modeling studies suggest that a few or even a single cofilin can sever filaments, possibly with different severing rate constants. How clusters grow through the cooperative incorporation of additional cofilin molecules, specifically if they elongate asymmetrically or uniformly from both ends and if they are modulated by filament shape and external force, also lacks consensus. Here, using hydrodynamic flow to visualize individual actin filaments with TIRF microscopy, we found that neither flow-induced filament bending, tension, nor surface attachment conditions substantially affected the kinetics of cofilin binding to actin filaments. Clusters of bound cofilin preferentially extended toward filament pointed ends and displayed severing competency at small sizes (Cc < 3), with no detectable severing dependence on cluster size. These data support models in which small clusters of cofilin introduce local, but asymmetric, structural changes in actin filaments that promote filament severing with a rate constant that depends weakly on the size of the cluster.  相似文献   

14.
To bridge the gap between the contractile system in muscle and in vitro motility assay, we have devised an A-band motility assay system. A glycerinated skeletal myofibril was treated with gelsolin to selectively remove the thin filaments and expose a single A-band. A single bead-tailed actin filament trapped by optical tweezers was made to interact with the inside or the outer surface of the A-band, and the displacement of the bead-tailed filament was measured in a physiological ionic condition by phase-contrast and fluorescence microscopy. We observed large back-and-forth displacement of the filament accompanied by a large change in developed force. Despite this large tension fluctuation, we found that the average force was proportional to the overlap inside and outside the A-band up to approximately 150 nm and 300 nm from the end of the A-band, respectively. Consistent with the difference in the density of myosin molecules, the average force per unit length of the overlap inside the A-band (the time-averaged force/myosin head was approximately 1 pN) was approximately twice as large as that outside. Thus, we conclude that the A-band motility assay system described here is suitable for studying force generation on a single actin filament, and its sliding movement within a regular three-dimensional thick filament lattice.  相似文献   

15.
Rhodamine–phalloidin-labeled actin filaments were visualized gliding over a skeletal heavy meromyosin (HMM)-coated surface. Experiments at low filament densities showed that when two filaments collided, their paths were affected in a manner that depended on collision angle. Some collisions resulted in complete alignment of the filament paths; in others, the filaments crossed over one another. Filament crossover or alignment was equally probable at ∼40° contact angle. Filaments often underwent significant bending during collision and analysis of filament shape indicated an energy requirement of ∼13 kBT. Experiments were performed over a wide range of HMM surface density and actin filament bulk concentration. Actin filament gliding speed and path persistence plateaued above a critical HMM surface density, and at high (micromolar) actin filament concentrations, filament motion became dramatically aligned in a common direction. Spatiotemporal features of alignment behavior were determined by correlation analysis, supported by simulations. The thermal drift of individual filament tracks was suppressed as the population became more oriented. Spatial correlation analysis revealed that long-range alignment was due to incremental recruitment rather than fusion of locally ordered seed domains. The global alignment of filament movement, described by an “order parameter,” peaked at optimal actin concentrations and myosin surface densities, in contrast to previous predictions of a critical phase transition. Either hydrodynamic coupling or exchange of filaments between the surface bound and adjacent bulk phase layers might degrade order at high actin filament concentration, and high HMM surface densities might decrease alignment probability during collisions. Our results are compatible with generation of long-range order from mechanical interaction between individual actin filaments. Furthermore, we show that randomly oriented myosin motors align relatively short, submicrometer actin filaments into motile surface domains that extend over many tens of micrometers and these patterns persist for several minutes.  相似文献   

16.
Rhodamine–phalloidin-labeled actin filaments were visualized gliding over a skeletal heavy meromyosin (HMM)-coated surface. Experiments at low filament densities showed that when two filaments collided, their paths were affected in a manner that depended on collision angle. Some collisions resulted in complete alignment of the filament paths; in others, the filaments crossed over one another. Filament crossover or alignment was equally probable at ∼40° contact angle. Filaments often underwent significant bending during collision and analysis of filament shape indicated an energy requirement of ∼13 kBT. Experiments were performed over a wide range of HMM surface density and actin filament bulk concentration. Actin filament gliding speed and path persistence plateaued above a critical HMM surface density, and at high (micromolar) actin filament concentrations, filament motion became dramatically aligned in a common direction. Spatiotemporal features of alignment behavior were determined by correlation analysis, supported by simulations. The thermal drift of individual filament tracks was suppressed as the population became more oriented. Spatial correlation analysis revealed that long-range alignment was due to incremental recruitment rather than fusion of locally ordered seed domains. The global alignment of filament movement, described by an “order parameter,” peaked at optimal actin concentrations and myosin surface densities, in contrast to previous predictions of a critical phase transition. Either hydrodynamic coupling or exchange of filaments between the surface bound and adjacent bulk phase layers might degrade order at high actin filament concentration, and high HMM surface densities might decrease alignment probability during collisions. Our results are compatible with generation of long-range order from mechanical interaction between individual actin filaments. Furthermore, we show that randomly oriented myosin motors align relatively short, submicrometer actin filaments into motile surface domains that extend over many tens of micrometers and these patterns persist for several minutes.  相似文献   

17.
Dynamic images of isolated bacterial flagellar filaments undergoing cyclic transformations were recorded by dark-field light microscopy and an ultrasensitive video camera. Flagellar filaments derived from Salmonella SJ25 sometimes stick to a glass surface by short segments near one end. When such a filament, which is a left-handed helix, was subjected to a steady flow of a viscous solution of methylcellulose, its free portion was found to transform cyclically between left-handed (normal) and right-handed (curly or semi-coiled) helical forms. The transformations did not occur simultaneously throughout the whole length of a filament, but occurred at a transition point, which proceeded along the filament. Each transformation process consisted of three phases: initiation, growth and travel. The magnitudes of the mechanical forces, torque and tension, which were generated on a filament by the viscous flow, were obtained by quantitative hydrodynamic analyses. The torque was found responsible for initiating the transformation. The critical magnitude of torque required to induce the normal to semi-coiled transformation was ?11 × 10?19 N m and that for the reverse transformation from the semi-coiled to the normal form was 4 × 10?19 N m. Therefore, the filaments showed the characteristics of hysteresis during the cyclic transformation. New types of unstable right-handed helical forms (medium and large) were also induced by mechanical force.  相似文献   

18.
Single skinned fibers from soleus and adductor longus (AL) muscles of weight-bearing control rats and rats after 14-day hindlimb suspension unloading (HSU) were studied physiologically and ultrastructurally to investigate how slow fibers increase shortening velocity (V0) without fast myosin. We hypothesized that unloading and shortening of soleus during HSU reduces densities of thin filaments, generating wider myofilament separations that increase V0 and decrease specific tension (kN/m2). During HSU, plantarflexion shortened soleus working length 23%. AL length was unchanged. Both muscles atrophied as shown by reductions in fiber cross-sectional area. For AL, the 60% atrophy accounted fully for the 58% decrease in absolute tension (mN). In the soleus, the 67% decline in absolute tension resulted from 58% atrophy plus a 17% reduction in specific tension. Soleus fibers exhibited a 25% reduction in thin filaments, whereas there was no change in AL thin filament density. Loss of thin filaments is consistent with reduced cross bridge formation, explaining the fall in specific tension. V0 increased 27% in soleus but was unchanged in AL. The V0 of control and HSU fibers was inversely correlated (R = –0.83) with thin filament density and directly correlated (R = 0.78) with thick-to-thin filament spacing distance in a nonlinear fashion. These data indicate that reduction in thin filament density contributes to an increased V0 in slow fibers. Osmotically compacting myofilaments with 5% dextran returned density, spacing, and specific tension and slowed V0 to near-control levels and provided evidence for myofilament spacing modulating tension and V0. rat; soleus; adductor longus; fiber length; electron microscopy; hindlimb suspension unloading  相似文献   

19.
Fine structure of the thick filament in molluscan catch muscle   总被引:4,自引:0,他引:4  
  相似文献   

20.
The movement of reconstituted thin filaments over an immobilized surface of thiophosphorylated smooth muscle myosin was examined using an in vitro motility assay. Reconstituted thin filaments contained actin, tropomyosin, and either purified chicken gizzard caldesmon or the purified COOH-terminal actin-binding fragment of caldesmon. Control actin-tropomyosin filaments moved at a velocity of 2.3 +/- 0.5 microns/s. Neither intact caldesmon nor the COOH-terminal fragment, when maintained in the monomeric form by treatment with 10 mM dithiothreitol, had any effect on filament velocity; and yet both were potent inhibitors of actin-activated myosin ATPase activity, indicating that caldesmon primarily inhibits myosin binding as reported by Chalovich et al. (Chalovich, J. M., Hemric, M. E., and Velaz, L. (1990) Ann. N. Y. Acad. Sci. 599, 85-99). Inhibition of filament motion was, however, observed under conditions where cross-linking of caldesmon via disulfide bridges was present. To determine if monomeric caldesmon could "tether" actin filaments to the myosin surface by forming an actin-caldesmon-myosin complex as suggested by Chalovich et al., we looked for caldesmon-dependent filament binding and motility under conditions (80 mM KCl) where filament binding to myosin is weak and motility is not normally seen. At caldesmon concentrations > or = 0.26 microM, actin filament binding was increased and filament motion (2.6 +/- 0.6 microns/s) was observed. The enhanced motility seen with intact caldesmon was not observed with the addition of up to 26 microM COOH-terminal fragment. Moreover, a molar excess of the COOH-terminal fragment competitively reversed the enhanced binding seen with intact caldesmon. These results show that tethering of actin filaments to myosin by the formation of an actin-caldesmon-myosin complex enhanced productive acto-myosin interaction without placing a significant mechanical load on the moving filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号