首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Normal cell growth requires a precisely controlled balance between cell death and survival. This involves activation of different types of intracellular signaling cascades within the cell. While some types of signaling proteins regulate apoptosis, or programmed cell death, other proteins within the cell can promote survival. The serine/threonine kinase PAK4 can protect cells from apoptosis in response to several different types of stimuli. As is the case for other members of the p21-activated kinase (PAK) family, one way that PAK4 may promote cell survival is by phosphorylating and thereby inhibiting the proapoptotic protein Bad. This leads in turn to the inhibition of effector caspases such as caspase 3. Here we show that in response to cytokines which activate death domain-containing receptors, such as the tumor necrosis factor and Fas receptors, PAK4 can inhibit the death signal by a different mechanism. Under these conditions, PAK4 inhibits apoptosis early in the caspase cascade, antagonizing the activation of initiator caspase 8. This inhibition, which does not require PAK4's kinase activity, may involve inhibition of caspase 8 recruitment to the death domain receptors. This role in regulating initiator caspases is an entirely novel role for the PAK proteins and suggests a new mechanism by which these proteins promote cell survival.  相似文献   

8.
Regulated cell death and survival play important roles in neural development. Extracellular signals are presumed to regulate seven apparent caspases to determine the final structure of the nervous system. In the eye, the EGF receptor, Notch, and intact primary pigment and cone cells have been implicated in survival or death signals. An antibody raised against a peptide from human caspase 3 was used to investigate how extracellular signals controlled spatial patterning of cell death. The antibody crossreacted specifically with dying Drosophila cells and labelled the activated effector caspase Drice. It was found that the initiator caspase Dronc and the proapoptotic gene head involution defective were important for activation in vivo. Dronc may play roles in dying cells in addition to activating downstream effector caspases. Epistasis experiments ordered EGF receptor, Notch, and primary pigment and cone cells into a single pathway that affected caspase activity in pupal retina through hid and Inhibitor of Apoptosis Proteins. None of these extracellular signals appeared to act by initiating caspase activation independently of hid. Taken together, these findings indicate that in eye development spatial regulation of cell death and survival is integrated through a single intracellular pathway.  相似文献   

9.
BACKGROUND: The prostate androgen-regulated (PAR) gene is ubiquitously overexpressed in prostate cancer (PCa) cells and is involved in proliferation of PCa. However, the mechanism by which the modulation of PAR gene expression elicits its biological effects on PCa cells is not well documented. Here, we investigate the mechanism of PAR depletion inhibiting PCa cell growth. METHODS: PAR expression was depleted by small interfering RNA (siRNA) and its subsequent effects on proliferation of PC3 cells were determined by the trypan blue exclusion assay. Flow cytometric analysis provided the evidence for the progression of cell cycle and the induction of apoptosis which was further confirmed by the observation of cleavage of poly(ADP-ribose) polymerase. Western blot analysis was performed to investigate the involvement of critical molecular events known to regulate the cell cycle and the apoptotic machinery. RESULTS: siRNA transfection results in a dose-dependent inhibition of cell growth in PC3 cells by causing G2/M phase cell cycle arrest and apoptosis. The G2/M arrest by PAR depletion was associated with decreased levels of cyclin B1, pCdc2 (Tyr15), Cdc2 and Cdc25C. PAR depletion also was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax : Bcl-2. CONCLUSIONS: Our data indicate that PAR depletion induces G2/M arrest via the Cdc25C-Cdc2/cyclin B1 pathway. Furthermore, the results of the present study point toward involvement of pathways mediated by both caspase 8 and caspase 9 in apoptosis induction by PAR depletion.  相似文献   

10.
11.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

12.
Apoptosis is an important mechanism of physiological and pathological cell death and is known to occur in various neurological disorders. Apoptosis is associated with activation of genetic programs in which apoptosis-effector genes promote cell death, thereby opposing repressor genes that enhance cell survival. In this review, we describe various apoptotic pathways, with a special reference to the caspase cascade and discuss the role of individual antiapoptotic factors in various target diseases. Apoptosis could be suppressed by in vivo gene delivery of antiapoptotic factors directly into the central nervous system. The adeno-associated virus (AAV) vector is a good candidate for such gene therapy because it can infect postmitotic neurons. We also describe our in vivo system for overexpression of apoptotic protease activating factor-1 (Apaf-1) caspase recruitment domain as an Apaf1-dominant negative inhibitor (Apaf-1-DN) to regulate the mitochondrial caspase cascade. Apaf-1-DN delivery using an AAV vector system inhibited mitochondrial apoptotic signaling pathway and prevented dopaminergic cell death in a mouse model of Parkinson's disease. Our results suggest that AAV-Apaf-1-DN is potentially useful as an antimitochondrial apoptotic gene therapy for neurodegenerative disorders such as Parkinson's disease.  相似文献   

13.
Caspase‐9 has been reported as the key regulator of apoptosis, however, its role in skeletal myoblast development and molecular involvements during cell growth still remains unknown. The current study aimed to present the key role of caspase‐9 in the expressions of apoptotic caspases and genome, and cell viability during myoblast growth using RNA interference mediated silencing. Three small interference RNA sequences (siRNAs) targeting caspase‐9 gene was designed and ligated into pSilencer plasmid vector to construct shRNA expression constructs. Cells were transfected with the constructs for 48 h. Results indicated that all three siRNAs could silence the caspase‐9 mRNA expression significantly. Particularly, the mRNA expression level of caspase‐9 in the cells transfected by shRNA1, shRNA2 and shRNA3 constructs were reduced by 37.85%, 68.20% and 58.14%, respectively. Suppression of caspase‐9 led to the significant increases in the mRNA and protein expressions of effector caspase‐3, whereas the reduction in mRNA and protein expressions of caspase‐7. The microarray results showed that the suppression of caspase‐9 resulted in significant upregulations of cell proliferation‐, adhesion‐, growth‐, development‐ and division‐regulating genes, whereas the reduction in the expressions of cell death program‐ and stress response‐regulating genes. Furthermore, cell viability was significantly increased following the transfection. These data suggest that caspase‐9 could play an important role in the control of cell growth, and knockdown of caspase‐9 may have genuine potential in the treatment of skeletal muscle atrophy.  相似文献   

14.
15.
Susceptibility to CD95 (Fas/APO-1)-mediated apoptosis in human glioma cells depends on CD95 expression and unknown factors that regulate signal transduction. Thus, LN-18 cells are highly sensitive to CD95 ligand (CD95L) whereas LN-229 cells require coexposure to inhibitors of RNA or protein synthesis for induction of apoptosis. Here, we report that caspase 8 and 3 activation, poly(ADP-ribose)polymerase cleavage and apoptosis are inhibited by the lipoxygenase inhibitor, nordihydroguaretic acid (NDGA), or ectopic expression of crm-A or bcl-2. CD95L-induced glioma cell apoptosis does not involve ceramide generation. Apoptosis induced by exogenous ceramide resembles CD95-mediated apoptosis in that bcl-2 is protective but differs in that NDGA and crm-A have no effect and in that cycloheximide (CHX) inhibits rather than potentiates ceramide-induced cell death. We conclude that caspase 8 and caspase 3 activation, but not ceramide generation, are required for CD95 ligand-induced apoptosis of glioma cells and that bcl-2, crm-A and NDGA all act upstream of caspases to inhibit apoptosis.  相似文献   

16.
17.
18.
Caspase-8 has an important role as an initiator caspase during death receptor-mediated apoptosis. Moreover, it has been reported to contribute to the regulation of cell fate in various types of cells including T-cells. In this report, we show that caspase-8 has an essential role in cell survival in mouse T-lymphoma-derived L5178Y cells. The knockdown of caspase-8 expression decreased the growth rate and increased cell death, both of which were induced by the absence of protease activity of procaspase-8. The cell death was associated with reactive oxygen species (ROS) accumulation, caspase activation, and autophagosome formation. The cell death was inhibited completely by treatment with ROS scavengers, but only partly by treatment with caspase inhibitors, expression of Bcl-xL, and knockdown of caspase-3 or Atg-7 which completely inhibits apoptosis or autophagosome formation, respectively, indicating that apoptosis and autophagy-associated cell death are induced simultaneously by the knockdown of caspase-8 expression. Further analysis indicated that RIP1 and RIP3 regulate this multiple cell death, because the cell death as well as ROS production was completely inhibited by not only treatment with the RIP1 inhibitor necrostatin-1, but also by knockdown of RIP3. Thus, in the absence of protease activity of procaspase-8, RIP1 and RIP3 simultaneously induce not only nonapoptotic cell death conceivably including autophagic cell death and necroptosis but also apoptosis through ROS production in mouse T-lymphoma cells.  相似文献   

19.
20.
The calpains play an important role in cell death and cell signalling. Caspases catalyse wholesale destruction of cellular proteins which is a major cause of cellular death. The current study looks at the function of μ‐calpain and caspase 9, using RNAi (RNA interference)‐mediated silencing, and to observe the mRNA expression level of caspase genes during satellite cell growth. The satellite cells were treated with siRNA (small interfering RNA) of μ‐calpain and caspase 9 separately. There was reduction of 16 and 24% in CAPN1 (calpain1)‐siRNA2 and CAPN1‐siRNA3 transfected cells respectively, whereas it was 60 and 56% in CAPN1‐siRNA1 and CAPN1‐siRNA4 transfected cells respectively. CAPN1‐siRNA4 and CAPN1‐siRNA1 treated cells showed more reduction in caspase 3 and 7 gene expression. CARD9 (caspase recruitment domain 9)‐siRNA1 and CARD9‐siRNA2‐treated cells showed reduction of 40 and 49% respectively. CARD9‐siRNA1 and CARD9‐siRNA2 showed an increase in caspase 3 gene expression, whereas CARD9‐siRNA2 showed reduction in caspase 7 gene expression. These results suggest a strong cross‐talk between μ‐calpain and the caspase enzyme systems. Suppression of target genes, such as μ‐calpain and caspase 9, might have genuine potential in the treatment of skeletal muscle atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号