首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) in trans, and inverted terminal repeat (ITR) sequences in cis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome with an AAV2 ITR. In vitro replication assays indicated that the block occurs at the level of replication instead of at viral assembly. AAV2 and AAV5 Rep binding activities demonstrate similar affinities for either an AAV2 or AAV5 ITR; however, comparison of terminal resolution site (TRS) endonuclease activities showed a difference in specificity for the two DNA sequences. AAV2 Rep78 cleaved only a type 2 ITR DNA sequence, and AAV5 Rep78 cleaved only a type 5 probe efficiently. Mapping of the AAV5 ITR TRS identified a distinct cleavage site (AGTG TGGC) which is absent from the ITRs of other AAV serotypes. Comparison of the TRSs in the AAV2 ITR, the AAV5 ITR, and the AAV chromosome 19 integration locus identified some conserved nucleotides downstream of the cleavage site but little homology upstream.  相似文献   

2.
Four Rep proteins are encoded by the human parvovirus adeno-associated virus type 2 (AAV). The two largest proteins, Rep68 and Rep78, have been shown in vitro to perform several activities related to AAV DNA replication. The Rep78 and Rep68 proteins are likely to be involved in the targeted integration of the AAV DNA into human chromosome 19, and the full characterization of these proteins is important for exploiting this phenomenon for the use of AAV as a vector for gene therapy. To obtain sufficient quantities for facilitating the characterization of the biochemical properties of the Rep proteins, the AAV rep open reading frame was cloned and expressed in Escherichia coli as a fusion protein with maltose-binding protein (MBP). Recombinant MBP-Rep68 and MBP-Rep78 proteins displayed the following activities reported for wild-type Rep proteins when assayed in vitro: (i) binding to the AAV inverted terminal repeat (ITR), (ii) helicase activity, (iii) site-specific (terminal resolution site) endonuclease activity, (iv) binding to a sequence within the integration locus for AAV DNA on human chromosome 19, and (v) stimulation of radiolabeling of DNA containing the AAV ITR in a cell extract. These five activities have been described for wild-type Rep produced from mammalian cell extracts. Furthermore, we recharacterized the sequence requirements for Rep binding to the ITR and found that only the A and A' regions are necessary, not the hairpin form of the ITR.  相似文献   

3.
Both the Rep68 and Rep78 proteins of adeno-associated virus type 2 (AAV) bind to AAV terminal repeat hairpin DNA and can mediate site-specific nicking in vitro at the terminal resolution site (trs) within the terminal repeats. To define the regions of the Rep proteins required for these functions, a series of truncated Rep78 derivatives was created. Wild-type and mutant proteins were synthesized by in vitro translation and analyzed for AAV hairpin DNA binding, trs endonuclease activity, and interaction on hairpin DNA. Amino-terminal deletion mutants which lacked the first 29 or 79 amino acid residues of Rep78 did not bind hairpin DNA, which is consistent with our previous identification of a DNA-binding domain in this region. Progressive truncation of the carboxyl-terminal region of Rep78 did not eliminate hairpin DNA binding until the deletion reached amino acid 443. The electrophoretic mobility of the Rep-specific protein-DNA complexes was inversely related to the molecular weight of the Rep derivative. Analysis of the C-terminal deletion mutants by the trs endonuclease assay identified a region (amino acids 467 to 476) that is essential for nicking but is not necessary for DNA binding. When endonuclease-positive, truncated Rep proteins that bound hairpin DNA were mixed with full-length Rep78 or Rep68 protein in electrophoretic mobility shift assays, a smear of protein-DNA complexes was observed. This smear migrated at an intermediate position with respect to the bands generated by the proteins individually. An antibody recognizing only the full-length protein produced a novel supershift band when included in a mixed binding assay containing Rep68 and a truncated Rep mutant. These experiments suggest that the Rep proteins can form hetero-oligomers on the AAV hairpin DNA.  相似文献   

4.
Cloning and Characterization of Adeno-Associated Virus Type 5   总被引:20,自引:8,他引:12       下载免费PDF全文
Adeno-associated virus type 5 (AAV5) is distinct from other dependovirus serotypes based on DNA hybridization and serological data. To better understand the biology of AAV5, we have cloned and sequenced its genome and generated recombinant AAV5 particles. The single-stranded DNA genome is similar in length and genetic organization to that of AAV2. The rep gene of AAV5 is 67% homologous to AAV2, with the majority of the changes occurring in the carboxyl and amino termini. This homology is much less than that observed with other reported AAV serotypes. The inverted terminal repeats (ITRs) are also unique compared to those of the other AAV serotypes. While the characteristic AAV hairpin structure and the Rep DNA binding site are retained, the consensus terminal resolution site is absent. These differences in the Rep proteins and the ITRs result in a lack of cross-complementation between AAV2 and AAV5 as measured by the production of recombinant AAV particles. Alignment of the cap open reading frame with that of the other AAV serotypes identifies both conserved and variable regions which could affect tissue tropism and particle stability. Comparison of transduction efficiencies in a variety of cells lines and a lack of inhibition by soluble heparin indicate that AAV5 may utilize a distinct mechanism of uptake compared to AAV2.  相似文献   

5.
6.
Mini-adenoviruses (mAd) deleted of all viral coding regions represent an emerging approach for transgene expression. We have exploited the unique features of the adeno-associated virus (AAV) terminal repeats within the context of an adenovirus-adeno-associated hybrid virus (Ad/AAV) as a strategy for rapid and efficient generation of mAd. Excision and generation of mAd from the parental Ad/AAV hybrid vector was achieved in 293 cells through recombination but without selection for mAd production. Analysis of mAd isolated from 293 cells indicated that mAd DNA exists as monomer and dimer forms within the recombinant viral capsid. Formation of recombinant mAd was significantly increased using an AAV Rep78- or Rep68-expressing cell line through Rep-mediated excision utilizing the AAV terminal repeat sequences present in the Ad/AAV hybrid virus genome. The mAd viruses were infectious and able to transfer functional gene to A549 and HeLa cells. This approach is rapid and efficient, thereby providing a simplified methodology for generating mAd with functional transducing capabilities.  相似文献   

7.
Adeno-associated virus type 2 (AAV2) preferentially integrates its genome into the AAVS1 locus on human chromosome 19. Preferential integration requires the AAV2 Rep68 or Rep78 protein (Rep68/78), a Rep68/78 binding site (RBS), and a nicking site within AAVS1 and may also require an RBS within the virus genome. To obtain further information that might help to elucidate the mechanism and preferred substrate configurations of preferential integration, we amplified junctions between AAV2 DNA and AAVS1 from AAV2-infected HeLaJW cells and cells with defective Artemis or xeroderma pigmentosum group A genes. We sequenced 61 distinct junctions. The integration junction sequences show the three classical types of nonhomologous-end-joining joints: microhomology at junctions (57%), insertion of sequences that are not normally contiguous with either the AAV2 or the AAVS1 sequences at the junction (31%), and direct joining (11%). These junctions were spread over 750 bases and were all downstream of the Rep68/78 nicking site within AAVS1. Two-thirds of the junctions map to 350 bases of AAVS1 that are rich in polypyrimidine tracts on the nicked strand. The majority of AAV2 breakpoints were within the inverted terminal repeat (ITR) sequences, which contain RBSs. We never detected a complete ITR at a junction. Residual ITRs at junctions never contained more than one RBS, suggesting that the hairpin form, rather than the linear ITR, is the more frequent integration substrate. Our data are consistent with a model in which a cellular protein other than Artemis cleaves AAV2 hairpins to produce free ends for integration.  相似文献   

8.
The adeno-associated virus 2 (AAV) contains a single-stranded DNA genome of which the terminal 145 nucleotides are palindromic and form T-shaped hairpin structures. These inverted terminal repeats (ITRs) play an important role in AAV DNA replication and resolution, since each of the ITRs contains a terminal resolution site (trs) that is the target site for the AAV rep gene products (Rep). However, the Rep proteins also interact with the AAV DNA sequences that lie outside the ITRs, and the ITRs also play a crucial role in excision of the proviral genome from latently infected cells or from recombinant AAV plasmids. To distinguish between Rep-mediated excision of the viral genome during rescue from recombinant AAV plasmids and the Rep-mediated resolution of the ITRs during AAV DNA replication, we constructed recombinant AAV genomes that lacked either the left or the right ITR sequence and one of the Rep-binding sites (RBSs). No rescue and replication of the AAV genome occurred from these plasmids following transfection into adenovirus type 2-infected human KB cells, as expected. However, excision and abundant replication of the vector sequences was clearly detected from the plasmid that lacked the AAV left ITR, suggesting the existence of an additional putative excision site in the left end of the AAV genome. This site was precisely mapped to one of the AAV promoters at map unit 5 (AAV p5) that also contains an RBS. Furthermore, deletion of this RBS abolished the rescue and replication of the vector sequences. These studies suggest that the Rep-mediated cleavage at the RBS during viral DNA replication may, in part, account for the generation of the AAV defective interfering particles.  相似文献   

9.
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.  相似文献   

10.
Adeno-associated virus (AAV)-based vectors are promising tools for targeted transfer in gene therapy studies. Many efforts have been accomplished to improve production and purification methods. We thought to develop a simple eukaryotic system allowing AAV replication which could provide an excellent opportunity for studying AAV biology and, more importantly, for AAV vector production. It has been shown that yeast Saccharomyces cerevisiae is able to replicate and form the capsid of many viruses. We investigated the ability of the yeast Saccharomyces cerevisiae to carry out the replication of a recombinant AAV (rAAV). When a plasmid containing a rAAV genome in which the cap gene was replaced with the S. cerevisiae URA3 gene, was co-transformed in yeast with a plasmid expressing Rep68, a significant number of URA3(+) clones were scored (more than 30-fold over controls). Molecular analysis of low molecular weight DNA by Southern blotting revealed that single stranded DNA is formed and that the plasmid is entirely replicated. The ssDNA contains the ITRs, URA3 gene and also vector sequences suggesting the presence of two distinct molecules. Its formation was dependent on Rep68 expression and ITR. These data indicate that DNA is not obtained by the canonical AAV replication pathway.  相似文献   

11.
The Rep78 and Rep68 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which are required for viral replication, regulation of AAV promoters, and preferential integration of the AAV genome into a region of human chromosome 19. These proteins bind the hairpin structures formed by the AAV inverted terminal repeat (ITR) origins of replication, make site- and strand-specific endonuclease cuts within the AAV ITRs, and display nucleoside triphosphate-dependent helicase activities. Additionally, several mutant Rep proteins display negative dominance in helicase and/or endonuclease assays when they are mixed with wild-type Rep78 or Rep68, suggesting that multimerization may be required for the helicase and endonuclease functions. Using overlap extension PCR mutagenesis, we introduced mutations within clusters of charged residues throughout the Rep68 moiety of a maltose binding protein-Rep68 fusion protein (MBP-Rep68Δ) expressed in Escherichia coli cells. Several mutations disrupted the endonuclease and helicase activities; however, only one amino-terminal-charge cluster mutant protein (D40A-D42A-D44A) completely lost AAV hairpin DNA binding activity. Charge cluster mutations within two other regions abolished both endonuclease and helicase activities. One region contains a predicted alpha-helical structure (amino acids 371 to 393), and the other contains a putative 3,4 heptad repeat (coiled-coil) structure (amino acids 441 to 483). The defects displayed by these mutant proteins correlated with a weaker association with wild-type Rep68 protein, as measured in coimmunoprecipitation assays. These experiments suggest that these regions of the Rep molecule are involved in Rep oligomerization events critical for both helicase and endonuclease activities.  相似文献   

12.
We have characterized 95% (4,404 nucleotides) of the genome of adeno-associated virus type 5 (AAV5), including part of the terminal repeats and the terminal resolution site. Our results show that AAV5 is different from all other described AAV serotypes at the nucleotide level and at the amino acid level. The sequence homology to AAV2, AAV3B, AAV4, and AAV6 at the nucleotide level is only between 54 and 56%. The positive strand contains two large open reading frames (ORFs). The left ORF encodes the nonstructural (Rep) proteins, and the right ORF encodes the structural (Cap) proteins. At the amino acid level the identities with the capsid proteins of other AAVs range between 51 and 59%, with a high degree of heterogeneity in regions which are considered to be on the exterior surface of the viral capsid. The overall identity for the nonstructural Rep proteins at the amino acid level is 54.4%. It is lowest at the C-terminal 128 amino acids (10%). There are only two instead of the common three putative Zn fingers in the Rep proteins. The Cap protein data suggest differences in capsid surfaces and raise the possibility of a host range distinct from those of other parvoviruses. This may have important implications for AAV vectors used in gene therapy.  相似文献   

13.
Herpes simplex virus (HSV) helper functions for (AAV) replication comprise HSV ICP8 and helicase-primase UL5/UL52/UL8. Here we show that N-terminal amino acids of AAV Rep78 that contact the Rep-binding site within the AAV inverted terminal repeat (ITR) are required for ternary-complex formation with infected-cell protein 8 (ICP8) on AAV single-strand DNA (ssDNA) in vitro and for colocalization in nuclear replication domains in vivo. Our data suggest that HSV-dependent AAV replication is initiated by Rep contacting the AAV ITR and by cooperative binding of ICP8 on AAV ssDNA.  相似文献   

14.
The adeno-associated viruses (AAVs) can package and deliver foreign DNA into cells for corrective gene delivery applications. The AAV serotypes have distinct cell binding, transduction, and antigenic characteristics that have been shown to be dictated by the capsid viral protein (VP) sequence. To understand the contribution of capsid structure to these properties, we have determined the crystal structure of AAV serotype 4 (AAV4), one of the most diverse serotypes with respect to capsid protein sequence and antigenic reactivity. Structural comparison of AAV4 to AAV2 shows conservation of the core beta strands (betaB to betaI) and helical (alphaA) secondary structure elements, which also exist in all other known parvovirus structures. However, surface loop variations (I to IX), some containing compensating structural insertions and deletions in adjacent regions, result in local topological differences on the capsid surface. These include AAV4 having a deeper twofold depression, wider and rounder protrusions surrounding the threefold axes, and a different topology at the top of the fivefold channel from that of AAV2. Also, the previously observed "valleys" between the threefold protrusions, containing AAV2's heparin binding residues, are narrower in AAV4. The observed differences in loop topologies at subunit interfaces are consistent with the inability of AAV2 and AAV4 VPs to combine for mosaic capsid formation in efforts to engineer novel tropisms. Significantly, all of the surface loop variations are associated with amino acids reported to affect receptor recognition, transduction, and anticapsid antibody reactivity for AAV2. This observation suggests that these capsid regions may also play similar roles in the other AAV serotypes.  相似文献   

15.
To achieve stable gene transfer into human hematopoietic cells, we constructed a new vector, DeltaAd5/35.AAV. This vector has a chimeric capsid containing adenovirus type 35 fibers, which conferred efficient infection of human hematopoietic cells. The DeltaAd5/35.AAV vector genome is deleted for all viral genes, allowing for infection without virus-associated toxicity. To generate high-capacity DeltaAd5/35.AAV vectors, we employed a new technique based on recombination between two first-generation adenovirus vectors. The resultant vector genome contained an 11.6-kb expression cassette including the human gamma-globin gene and the HS2 and HS3 elements of the beta-globin locus control region. The expression cassette was flanked by adeno-associated virus (AAV) inverted terminal repeats (ITRs). Infection with DeltaAd5/35.AAV allowed for stable transgene expression in a hematopoietic cell line after integration into the host genome through the AAV ITR(s). This new vector exhibits advantages over existing integrating vectors, including an increased insert capacity and tropism for hematopoietic cells. It has the potential for stable ex vivo transduction of hematopoietic stem cells in order to treat sickle cell disease.  相似文献   

16.
The adeno-associated virus (AAV) Rep78 and Rep68 proteins are required for site-specific integration of the AAV genome into the AAVS1 locus (19q13.3-qter) as well as for viral DNA replication. Rep78 and Rep68 bind to the GAGC motif on the inverted terminal repeat (ITR) and cut at the trs (terminal resolution site). A similar reaction is believed to occur in AAVS1 harboring an analogous GAGC motif and a trs homolog, followed by integration of the AAV genome. To elucidate the functional domains of Rep proteins at the amino acid level, we performed charged-to-alanine scanning mutagenesis of the N terminus (residues 1 to 240) of Rep78, where DNA binding and nicking domains are thought to exist. Mutants were analyzed for their abilities to bind the GAGC motif, nick at the trs homolog, and integrate an ITR-containing plasmid into AAVS1 by electrophoretic mobility shift assay, trs endonuclease assay, and PCR-based integration assay. We identified the residues responsible for DNA binding: R107A, K136A, and R138A mutations completely abolished the binding activity. The H90A or H92A mutant, carrying a mutation in a putative metal binding site, lost nicking activity while retaining binding activity. Mutations affecting DNA binding or trs nicking also impaired the site-specific integration, except for E66A and E239A. These results provide important information on the structure-function relationship of Rep proteins. We also describe an aberrant nicking of Rep78. We found that Rep78 cuts predominantly at the trs homolog not only between the T residues (GGT/TGG), but also between the G and T residues (GG/TTGG), which may be influenced by the sequence surrounding the GAGC motif.  相似文献   

17.
The adeno-associated virus (AAV) rep gene codes for a family of nonstructural proteins which are required for AAV gene regulation and DNA replication. In addition, rep has been implicated in a variety of activities outside the AAV life cycle which have been difficult to study, since attempts to achieve separate and constitutive expression of rep in stable cell lines have failed so far. Here we report the generation of two cell lines which inducibly express Rep78 under the control of the glucocorticoid-responsive mouse mammary tumor virus promoter. In addition, one of the cell lines constitutively expresses relatively high levels of Rep52. Both cell lines showed similar plating efficiencies with and without induction of Rep78 expression, which rules out cytotoxic effects of Rep78. The cell lines efficiently support DNA replication of a rep-negative AAV genome and initiate the formation of AAV particles. However, despite the correct sizes and stoichiometry of the three capsid proteins, the AAV particles were noninfectious. This was found to be due to a defect in the accumulation of single-stranded AAV DNA. Transient transfection of single expression constructs for constitutive, high-level expression of individual Rep proteins (either Rep78, Rep68, Rep52, or Rep40) complemented this defect. Infectious rep-negative AAV progeny was produced at varying efficiencies depending on the rep expression construct used. These data show that functional expression of full-length Rep in recombinant cell lines is possible and that the state of Rep expression is critical for the infectivity of AAV progeny produced.  相似文献   

18.
Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.  相似文献   

19.
20.
An adeno-associated virus (AAV) genome with a Lys-to-His (K340H) mutation in the consensus nucleotide triphosphate binding site of the rep gene has a dominant-negative DNA replication phenotype in vivo. We expressed both wild-type (Rep78) and mutant (Rep78NTP) proteins in two helper-free expression systems consisting of either recombinant baculoviruses in insect cells or the human immunodeficiency virus type 1 long terminal repeat promoter in human 293 cell transient transfections. We analyzed nuclear extracts from both expression systems for the ability to complement uninfected HeLa cell cytoplasmic extracts in an in vitro terminal resolution assay in which a covalently closed AAV terminal hairpin structure is converted to an extended linear duplex. Although both Rep78 and Rep78NTP bound to AAV terminal hairpin DNA in vitro, Rep78 but not Rep78NTP complemented the terminal resolution assay. Furthermore, Rep78NTP was trans dominant for AAV terminal resolution in vitro. We propose that the dominant-negative replication phenotype of AAV genomes carrying the K340H mutation is mediated by mutant Rep proteins binding to the terminal repeat hairpin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号