首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously characterised the C-type lectin-like receptor genes B-NK and B-lec, located next to each other in opposite orientations in the chicken major histocompatibility complex (MHC). We showed that B-NK is an inhibitory receptor expressed on natural killer cells, whereas B-lec is an activation-induced receptor with a broader expression pattern. It is interesting to note that the chicken MHC has been linked with resistance or susceptibility to Marek's disease virus (MDV), an oncogenic herpes virus. Recent reports show that the C-type lectin-like receptors in mouse and rat (Ly49H, NKR-P1 and Clr) are associated with resistance to another herpesvirus, cytomegalovirus (CMV). Therefore, B-NK and B-lec are potential candidate genes for the MHC-mediated resistance to MDV. In this paper, we report that both genes encode glycosylated type II membrane proteins that form disulphide-linked homodimers. The gene sequences from nine lines of domestic chicken representing seven haplotypes show that B-lec is well conserved between the different haplotypes, apparently under purifying selection. In contrast, B-NK has high allelic polymorphism and moderate sequence diversity, with 21 nucleotide changes in the complementary deoxyribonucleic acids (cDNAs) resulting in 20 amino acid substitutions. The allelic variations include substitutions, an indel and loss/gain of three predicted N-linked glycosylation sites. Strikingly, there is as much as 7% divergence between protein sequences of B-NK from different haplotypes, greater than the difference observed between the highly polymorphic human KIR NK receptors. Analysis of ds and dn reveal evidence of strong positive selection for B-NK to be polymorphic at the protein level, and modelling demonstrates significant variation between haplotypes in the predicted ligand binding face of B-NK.  相似文献   

2.
3.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

4.
5.
6.
The NK cell receptor protein 1 (NKR-P1) (CD161) molecules represent a family of type II transmembrane C-type lectin-like receptors expressed predominantly by NK cells. Despite sharing a common NK1.1 epitope, the mouse NKR-P1B and NKR-P1C receptors possess opposing functions in NK cell signaling. Engagement of NKR-P1C stimulates cytotoxicity of target cells, Ca2+ flux, phosphatidylinositol turnover, kinase activity, and cytokine production. In contrast, NKR-P1B engagement inhibits NK cell cytotoxicity. Nonetheless, it remains unclear how different signaling outcomes are mediated at the molecular level. Here, we demonstrate that both NKR-P1B and NKR-P1C associate with the tyrosine kinase, p56(lck). The interaction is mediated through the di-cysteine CxCP motif in the cytoplasmic domains of NKR-P1B/C. Disrupting this motif leads to abrogation of both stimulatory and inhibitory NKR-P1 signals. In addition, mutation of the consensus ITIM (LxYxxL) in NKR-P1B abolishes both its Src homology 2-containing protein tyrosine phosphatase-1 recruitment and inhibitory function. Strikingly, engagement of NKR-P1C on NK cells obtained from Lck-deficient mice failed to induce NK cytotoxicity. These results reveal a role for Lck in the initiation of NKR-P1 signals, and demonstrate a requirement for the ITIM in NKR-P1-mediated inhibition.  相似文献   

7.
Receptors on natural killer (NK) cells are classified as C-type lectins or as Ig-like molecules, and many of them are encoded by two genomic clusters designated natural killer gene complex (NKC) and leukocyte receptor complex, respectively. Here, we describe the analysis of an NKC-encoded chicken C-type lectin, previously annotated as homologue to CD94 and NKG2 and thus designated chicken CD94/NKG2. To further elucidate its potential function on NK cells, we produced a specific mab by immunizing with stably transfected HEK293 cells expressing this lectin. Staining of various chicken tissues revealed minimal reactivity with bursal, or thymus cells. In peripheral blood mononuclear cell and spleen, however, the mab reacted with virtually all thrombocytes, whereas most NK cells in organs such as embryonic spleen, lung and intestine were found to be negative. These findings indicate that the gene may not resemble CD94/NKG2, but rather a CLEC-2 homologue, a claim further supported by sequence features such as an additional extracellular cysteine residue and the presence of a cytoplasmic motif known as a hem immunoreceptor tyrosine-based activation motif, found in C-type lectins such as Dectin-1, CLEC-2, but not CD94/NKG2. The biochemical analyses demonstrated that CLEC-2 is present on the cell surface as heavily glycosylated homodimer, which upon mab crosslinking induced thrombocyte activation, as measured by CD107 expression. These analyses reveal that the chicken NKC may not encode NK cell receptor genes, in particular not CD94 or NKG2 genes, and identifies a chicken CLEC-2 homologue.  相似文献   

8.
The proximal region of the NK gene complex encodes the NKR-P1 family of killer cell lectin-like receptors which in mice bind members of the genetically linked C-type lectin-related family, while the distal region encodes Ly49 receptors for polymorphic MHC class I molecules. Although certain members of the NKR-P1 family are expressed by all NK cells, we have identified a novel inhibitory rat NKR-P1 molecule termed NKR-P1C that is selectively expressed by a Ly49-negative NK subset with unique functional characteristics. NKR-P1C(+) NK cells efficiently lyse certain tumor target cells, secrete cytokines upon stimulation, and functionally recognize a nonpolymorphic ligand on Con A-activated lymphoblasts. However, they specifically fail to kill MHC-mismatched lymphoblast target cells. The NKR-P1C(+) NK cell subset also appears earlier during development and shows a tissue distribution distinct from its complementary Ly49s3(+) subset, which expresses a wide range of Ly49 receptors. These data suggest the existence of two major, functionally distinct populations of rat NK cells possessing very different killer cell lectin-like receptor repertoires.  相似文献   

9.
10.
J Xie 《Glycoconjugate journal》2012,29(5-6):273-284
Natural killer gene complex (NKC) encodes a group of proteins with a single C-type lectin-like domain, (CTLD) which can be subdivided several subfamilies according to their structures and expression patterns. The receptors containing the conserved calcium binding sites in the CTLD fold belong to group II of C-type lectin superfamily and are expressed on myeloid cells and non- myeloid cells. The receptors lacking conserved calcium binding sites in the CTLD fold have evolved to bind ligands other than carbohydrates independently on calcium and thereby are named as C-type lectin-like receptors. The C-type lectin-like receptors are previously thought to be exclusively expressed on natural killer (NK) cells and enable NK cells to discriminate self, missing self or altered self. However, some C-type lectin-like receptors are identified in myeloid cells and are intensely investigated, recently. These myeloid C-type lectin-like receptors, especially Dectin-1 cluster, have a wide variety of ligands, including those of exogenous origin, and play important roles in the physiological functions and pathological processes including immune homeostasis, immune defenses, and immune surveillance. In this review, we summarize each member of the Dectin-1 cluster, including their structural profiles, expression patterns, signaling properties as well as known physiological functions.  相似文献   

11.
We report the identification of a novel family of genes, named Clr, encoding C-type lectin-like molecules, which maps in the natural killer (NK) gene complex (NKC) on mouse Chromosome 6. Genomic sequence analysis indicates the presence of at least seven members between Nkrpla and Cd69. By RT-PCR, at least three members of the family are expressed on interleukin-2-activated NK cells. Sequence analysis revealed complete open reading frames of 203-205 amino acids, with a carboxyl-terminal C-type lectin-like carbohydrate recognition domain (CRD). The CRDs of the Clr proteins exhibit a significant degree of homology with the known NKC-encoded NK-cell receptors. However, a key cysteine usually present in the CRD is missing in the Clr proteins, suggesting that their ligands and functions are distinct from other molecules encoded in the NKC.  相似文献   

12.
Cellular cytotoxicity is the hallmark of NK cells mediating both elimination of virus-infected or malignant cells, and modulation of immune responses. NK cytotoxicity is triggered upon ligation of various activating NK cell receptors. Among these is the C-type lectin-like receptor NKp80 which is encoded in the human Natural Killer Gene Complex (NKC) adjacent to its ligand, activation-induced C-type lectin (AICL). NKp80-AICL interaction promotes cytolysis of malignant myeloid cells, but also stimulates the mutual crosstalk between NK cells and monocytes.While many activating NK cell receptors pair with ITAM-bearing adaptors, we recently reported that NKp80 signals via a hemITAM-like sequence in its cytoplasmic domain. Here we molecularly dissect the NKp80 hemITAM and demonstrate that two non-consensus amino acids, in particular arginine 6, critically impair both hemITAM phosphorylation and Syk recruitment. Impaired Syk recruitment results in a substantial attenuation of cytotoxic responses upon NKp80 ligation. Reconstituting the hemITAM consensus or Syk overexpression resulted in robust NKp80-mediated responsiveness. Collectively, our data provide a molecular rationale for the restrained activation potential of NKp80 and illustrate how subtle alterations in signaling motifs determine subsequent cellular responses. They also suggest that non-consensus alterations in the NKp80 hemITAM, as commonly present among mammalian NKp80 sequences, may have evolved to dampen NKp80-mediated cytotoxic responses toward AICL-expressing cells.  相似文献   

13.
14.
The identification of C-type lectin (Group V) natural killer (NK) cell receptors in bony fish has remained elusive. Analyses of the Fugu rubripes genome database failed to identify Group V C-type lectin domains (Zelensky and Gready, BMC Genomics 5:51, 2004) suggesting that bony fish, in general, may lack such receptors. Numerous Group II C-type lectin receptors, which are structurally similar to Group V (NK) receptors, have been characterized in bony fish. By searching the zebrafish genome database we have identified a multi-gene family of Group II immune-related, lectin-like receptors (illrs) whose members possess inhibiting and/or activating signaling motifs typical of Group V NK receptors. Illr genes are differentially expressed in the myeloid and lymphoid lineages, suggesting that they may play important roles in the immune functions of multiple hematopoietic cell lineages.  相似文献   

15.
Dual function of C-type lectin-like receptors in the immune system   总被引:20,自引:0,他引:20  
Carbohydrate-binding C-type lectin and lectin-like receptors play an important role in the immune system. The large family can be subdivided into subtypes according to their structural similarities and functional differences. The selectins are of major importance in mediating cell adhesion and migration, and the mannose receptor subfamily is specialised in the binding and uptake of pathogens. Recent advances show that some of the type II C-type lectin-like receptors, such as DC-SIGN, can function both as an adhesion receptor and as a phagocytic pathogen-recognition receptor, similar to the Toll-like receptors. Although major differences in the cytoplasmic domains of these receptors might predict their function, recent findings show that differences in glycosylation of ligands can dramatically alter C-type lectin-like receptor usage.  相似文献   

16.
17.
18.
Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction.  相似文献   

19.
 Human natural killer (NK) cells express on their surface several members of the C-type lectin family such as NKR-P1, CD94, and NKG2 that are probably involved in recognition of target cells and delivery of signals modulating NK cell cytotoxicity. To elucidate the mechanisms involved in signaling via these receptors, we solubilized in vitro cultured human NK cells by a mild detergent, Brij-58, immunoprecipitated molecular complexes containing the NKR-P1 or CD94 molecules, respectively, by specific monoclonal antibodies, and performed in vitro kinase assays on the immunoprecipitates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, autoradiography, and phospho-amino acid analysis revealed the presence of in vitro tyrosine phosphorylated proteins that were subsequently identified by re-precipitation (and/or by western blotting) as the respective C-type lectin molecules and Src family kinases Lck, Lyn, and Fyn. The NKR-P1 and the CD94-containing complexes were independent of each other and both very large, as judged by Sepharose 4B gel chromatography. Crosslinking of NKR-P1 on the cell surface induced transient in vivo tyrosine phosphorylation of cellular protein substrates. These results indicate involvement of the associated Src-family kinases in signaling via the NKR-P1 and CD94 receptors. Received: 4 February 1997 / Revised: 28 February 1997  相似文献   

20.
Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号