首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The aim of this study was to estimate the influence on ultrastructure and function of endocrine and excretoric part of pancreas in rats of extremely low frequency alternating magnetic fields with parameters used in therapy in humans. The animals from the two experimental groups were exposed to a rectangular magnetic field waveform at a frequency of 10 Hz and induction of 1.8-3.8 mT--(group P) or a sinusoidal magnetic field at a frequency of 40 Hz and induction of 1.3-2.7 mT--(group S), respectively. The control rats were subjected to sham exposure. The cycle of 1, 3, 6, 9, and 14 daily exposure sessions lasting 30 min was made in all groups. Some of rats after finishing the cycle of 14 exposures were left in the same conditions except for the magnetic field for 3 or 10 days. In both groups of rats exposed to magnetic field, a distinct tendency to decrease glucose concentration, compared to control group, was observed during the exposure cycle. Serum glucose became normal after the end of exposure sessions. The concentrations of insulin in both groups of rats exposed to magnetic field were significantly higher, compared to the controls, during the exposure cycle. After the end of exposure cycle the concentration of insulin in group S became normal. In contrast, in group P the concentration of insulin decreased significantly on the last day of exposure, with a subsequent increase in the following days. The activity of alpha-amylase and lipase in the serum of experimental and control rats was not affected. In both groups of exposed rats, reversible changes of ultrastructure of the pancreatic islets, including expansion of the Golgi apparatus, extension of rough endoplasmatic reticulum, mitochondrial swelling, expansion of beta-granules and increase in number of empty vesicles in beta cells, occurred during the exposure. In acinar cells of exposed animals, a slight extension of rough endoplasmatic reticulum and mitochondrial swelling as transitory changes were observed. The structural and functional changes in pancreas are probably adaptative ones.  相似文献   

2.
The effect of maturation on collateral development of resistance arteries was investigated. Three to four sequential mesenteric arteries were ligated to create collateral pathways in anesthetized young (approximately 200 g) and mature (approximately 600 g) rats. Blood flow was similarly elevated in collaterals of young and mature animals. In vivo inner arterial diameter was increased only within young collaterals (33 +/- 7%, P < 0.001). Increases in number of intimal nuclei (57 +/- 10% vs. 52 +/- 14%) and cross-sectional medial area (33 +/- 13% vs. 38 +/- 5%) were similar between young and mature collaterals. Relative to the same animal controls, collateral endothelial nitric oxide synthase mRNA was increased as much in mature as in young rats. Proteomic analysis revealed significant differences in protein expression with maturation between control arteries as well as flow-loaded collateral vessels. The results indicate that, whereas intimal and medial remodeling events were similar in collaterals of young and mature rats, luminal expansion occurred only in young rats. Alteration in arterial protein expression with maturation and altered responses to stimuli for collateral development may contribute to this impairment.  相似文献   

3.
The effect of varying magnetic field on the development of spontaneous hypertension was studied in experiments on Okamoto rats. The influence of magnetic field during antenatal development caused persistent changes in lymphocyte and organ metabolism and accelerated the appearance of spontaneous hypertension in rats. Based on enzymatic activity of lymphocytes it is possible to predict the development of spontaneous arterial hypertension.  相似文献   

4.
Pronounced morphological alterations combined with destruction of muscular tissue make their appearance in intact arterial and lymphatic bed of pelvic extremities in rats after treatment with ultrasound of high intensity. Ultrasound of low intensity failed to cause morphological changes either in the arterial or the lymphatic bed of extremities. A course of exposure of injured arterial and lymphatic bed of rat's pelvic extremities to ultrasound of small intensity considerably accelerated processes of formation of the arterial and lymphatic collaterals.  相似文献   

5.
P K Gupta  C T Hung 《Life sciences》1990,46(7):471-479
The multiple tissue disposition of adriamycin hydrochloride delivered via magnetic albumin microspheres, in absence (control) and presence of magnetic field (experimental), has been investigated in rats. The animal tail was demarcated into three segments: T1, the dosing-site; T2, the target-site; and T3, the post target-site. Following the arterial cannulation at T1, 0.4 mg/kg of microsphere associated drug was administered to the control as well as the experimental animals. In experimental group, the target-site T2 was exposed to a 8000 G magnetic field for 30 min. In both groups the animals were sacrificed in triplicates over a 48 hr period and their various tissues monitored for drug concentrations using HPLC. In presence of magnetic field, the microspheres demonstrated 16 fold increase in the maximum drug concentration, 6 fold increase in drug exposure and 6 fold increase in the drug targeting efficiency for T2. Drug delivery to most non-target tissues, including heart and liver, was substantially reduced. The results quantitatively suggest that the efficacy of magnetic albumin microspheres in the targeted delivery of incorporated therapeutic agent is predominantly due to the magnetic effects, and not alone due to the characteristics of the micro-carrier system.  相似文献   

6.
This review is aimed to summarize the experimental researches in the influences of static magnetic field on laboratory rodent models, reported by laboratory scientists, experimental technicians, clinical surgeons, animal veterinarians, and other researchers. Past studies suggested that static magnetic field-singly applied or used combined with other physical or chemical substances-significantly relieved some pains and ameliorated certain diseases in different organ systems, e.g. hypertension, osteoporosis, neuralgia, diabetes and leukemia etc. But on the other hand, some harmful events have also been observed in a number of investigations, from cellular level to fetal development. So exposure to static magnetic field might have dual effects on experimental rodent in various environments, viz. there are potentially therapeutic benefits, as well as adverse effects from it. The positive effect may relate to moderate intensities, while negative influence seems to be in connection with acute strong static magnetic fields. In addition, different orientations of static magnetic field exert different degrees of impact. Thus, the bioeffects of static magnetic field exposure on mice/rats depend on magnetic field intensities, durations and directions, though the exactly relationship between them is still vague. Further researches need to perform with appropriate methodologies, ingenious designs repeatedly and systemically, not only in animal models, but also in human volunteers and patients.  相似文献   

7.
We investigated the combined effects of a moderate intensity static magnetic field (SMF) and an L-type voltage-gated Ca(2+) channel blocker, nicardipine in stroke-resistant spontaneously hypertensive rats during the development of hypertension. Five-week-old male rats were exposed to SMF intensity up to 180 mT (B(max)) with a peak spatial gradient of 133 mT/mm for 14 weeks. Four experimental groups of 14 animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip nicardipine injection (NIC); (4) SMF exposure with ip nicardipine injection (SMF + NIC). A disc-shaped permanent magnet or a dummy magnet was implanted in the vicinity adjacent to the left carotid sinus baroreceptor region in the neck of each rat. Nicardipine (2 mg/kg ip) was administered three times a week for 14 weeks, and then 15 min after each injection, arterial blood pressure (BP), heart rate (HR), baroreflex sensitivity (BRS), skin blood flow (SBF), skin blood velocity (SBV), plasma nitric oxide (NO) metabolites (NO(x) = NO(2) (-) + NO(3) (-)), plasma catecholamine levels and behavioral parameters of a functional observational battery were monitored. The action of nicardipine significantly decreased BP, and increased HR, SBF, SBV, plasma epinephrine and norepinephrine in the NIC group compared with the control respective age-matched group without changing plasma NO(x) levels. Neck exposure to SMF alone for 5-8 weeks significantly suppressed or retarded the development of hypertension together with increased BRS in SMF group. Furthermore, the exposure to SMF for 1-8 weeks significantly promoted the nicardipine-induced BP decrease in the SMF + NIC group compared with the respective NIC group. Moreover, the SMF induced a significant increase in plasma NO(x) in the nicardipine-induced hypotension. There were no significant differences in any of the physiological or behavioral parameters measured between the SMF + NIC and the NIC groups, nor between the SMF and the control groups. These results suggest that the SMF may enhance nicardipine-induced hypotension by more effectively antagonizing the Ca(2+) influx through the Ca(2+) channels compared with the NIC treatment alone. Furthermore, the enhanced antihypertensive effects of the SMF on the nicardipine-treated group appear to be partially related to the increased NO(x). Theoretical considerations suggest that the applied SMF (B(max) 40 mT, 0 Hz) can be converted into a changing magnetic field (B(max) 30-40 mT, 5.7-6.5 Hz or 7.5-8.3 Hz) in the baroreceptor region by means of the carotid artery pulsation. Therefore, we propose that the moderate intensity changing magnetic field, i.e., the magnetic field modulated by the pulse rate, may influence the activity of baroreceptor and baroreflex function.  相似文献   

8.
Hippocampal slices from 15-20-day-old Wistar rats were used to study the development of some features of synaptic transmission in hippocampus and the influence of partial limitation of the sensory inflow in the early ontogeny of this transmission. The dynamics of population spike changes was observed in the CA1 hippocampal field in response to stimulation of Schaffer collaterals. The early ontogenetic limitation of the sensory inflow was accomplished by cutting n. medianus on the 13th day. Between the 15th and 20th days, the dynamics of the population spike amplitude increase in the control and experimental animals was similar, however, the response amplitude of the control rats remained higher than in the experimental animals throughout the whole period of observation. It is suggested that the partial limitation of sensory inflow from a forelimb at the early stages of the ontogeny alters the formation of synaptic transmission in hippocampus.  相似文献   

9.
We showed previously in rabbits that 0.2 and 0.35 T static magnetic field (SMF) modulated systemic hemodynamics by arterial baroreceptors. We now have measured the effect of 0.25 T SMF on microcirculation within cutaneous tissue of the rabbit ear lobe by the rabbit ear chamber (REC) method. Forty experimental runs (20 controls and 20 SMF) were carried out in eight different rabbits with an equal number of control and SMF experiments on each individual. Rabbits were sedated by pentobarbital sodium (5 mg/kg/h, i.v.) during the entire 80 min experiment. SMF was generated by four neodium-iron-boron alloy (Nd2-Fe14-B) magnets (15 x 25 x 30 mm, Neomax, PIP - Tokyo Co., Ltd., Tokyo, Japan), positioned around the REC on the observing stage of an optical microscope. The direct intravital microscopic observation of the rabbit's ear microvascular net, along with simultaneous blood flow measurement by microphotoelectric plethysmography (MPPG), were performed PRE (20 min, baseline), DURING (40 min), and POST (20 min) magnetic field exposure. The control experiments were performed under the same conditions and according to the same time course, but without magnetic field. Data were analyzed comparing MPPG values and percent change from baseline in the same series, and between corresponding sections of control and SMF runs. In contrast to control series (100+/-0.0%-90.0+/-5.4%-87.7+/-7.1%, PRE-EXPOSURE-POST), after magnetic field exposure we observed increased blood flow (100+/-0.0%-117.8+/-9.6%*-113.8+/-14.0%, *P<0.05) which gradually decreased after exposure cessation. We propose that long exposure of a high level nonuniform SMF probably modifies microcirculatory homeostasis through modulation of the local release of endothelial neurohumoral and paracrine factors that act directly on the smooth muscle of the vascular wall, presumably by affecting ion channels or second messenger systems.  相似文献   

10.
An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no overall effects of magnetic fields on splenomegaly or survival in exposed animals. In addition, no significant and/or consistent differences were detected in hematological parameters between the magnetic field exposed and the ambient control groups.  相似文献   

11.
To provide possible laboratory support to health risk evaluation associated with long-term, low-intensity magnetic field exposure, 256 male albino rats and an equal number of control animals (initial age 12 weeks) were exposed 22 h/day to a 50 Hz magnetic flux density of 5 μmT for 32 weeks (a total of about 5000 h). Hematology was studied from blood samples before exposure to the field and at 12 week intervals. Morphology and histology of liver, heart, mesenteric lymph nodes, and testes as well as brain neurotransmitters were assessed at the end of the exposure period. In two identical sets of experiments, no significant differences in the investigated variables were found between exposed and sham-exposed animals. It is concluded that continuous exposure to a 50 Hz magnetic field of 5 μT from week 12 to week 44, which makes up ?70% of the life span of the rat before sacrifice, does not cause changes in growth rate, in the morphology and histology of liver, heart, mesenteric lymph nodes, testes, and bone marrow, in hematology and hematochemistry, or in the neurotransmitters dopamine and serotonin. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60?Hz and 1?mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43?°C for 12?min) and then exposed to the magnetic field for 15, 30 and 60?d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60?d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.  相似文献   

13.
The purpose of this study is to investigate the possible effect of an extremely low-frequency magnetic field (ELF-MF) on nitric oxide (NO) level. In this study, 27 male Sprague-Dawley rats were used. The rats were divided into three groups: two experimental and one control (sham-exposed). The first and second experimental group (n = 10) were exposed to 100 microT and 500 microT ELF-MF during 10 months, 2 h a day, respectively, and the third (n = 7) group was treated like an experimental group except for ELF-MF exposure in methacrylate boxes. After ELF-MF and sham exposure, serum nitrite levels were measured by Griess reaction. A significant reduction was observed in nitrite levels among the first and second experimental groups of rats and sham-exposed rats after exposure for 10 months, 2 h a day, to ELF-MF of 100 and 500 microT (p < 0.01). These results suggest that prolonged ELF-MF exposure at intensities of exposure limits, determined by ICNIRP for public and occupational, may reduce NO production probably affected by NO generation pathways.  相似文献   

14.
This study aimed to determine the effect of magnetic fields on the antioxidative defense and fitness-related traits of Baculum extradentatum. Following exposure to magnetic fields, antioxidative defense (superoxide dismutase (SOD), catalase (CAT) activities, and total glutathione (GSH) content) and fitness-related traits (egg mortality, development dynamics, and mass of nymphs) were monitored in nymphs. The experimental groups were: control (kept out of influence of the magnets), a group exposed to a constant magnetic field (CMF) of 50 mT, and a group exposed to an alternating magnetic field (AMF) of 50 Hz, 6 mT. We found increased SOD and CAT activities in animals exposed to constant and AMFs, whereas GSH activity was not influenced by experimental magnetic fields. No differences were found in egg mortality between control and experimental groups. Significant differences in the time of development between the control and the CMF group were observed, as well as between the CMF and the AMF group. No differences were found in the mass of the nymphs between the three experimental groups. In conclusion, CMF and AMF have the possibility to modulate the antioxidative defense and some of the fitness-related traits in B. extradentatum.  相似文献   

15.
目的:从免疫学方面探讨不同照射时间的恒定磁场对小鼠免疫功能的影响。方法:用同一强度不同照射时间的恒定磁场(2小时恒定磁场照射组、3小时恒定磁场照射组、4小时恒定磁场照射组和无磁场照射的正常对照组)对小鼠进行照射,连续20天,每天一次,末次12小时后称其体重,取出胸腺、脾脏、肝脏,称重,计算各器官指数。结果:与正常对照组比较,三组同一强度不同照射时间的恒定磁场组对小鼠的胸腺指数有显著的降低(p<0.05);2小时组与3小时组的肝脏指数也有显著的降低(p<0.05);对脾脏指数无显著影响(p>0.05)。结论:一定照射时间的恒定磁场对小鼠的免疫功能具有抑制作用。  相似文献   

16.
Hydration and [3H]ouabain uptake by different tissues of adult male rats were measured immediately after exposure to homogenous 0.2 T steady magnetic field. A time-dependent decrease of hydration and adaptation, followed by disadaptation, was detected in brain and liver tissues in most of the rats after 3.5-5 h of exposure. The number of functional active ouabain binding receptors, which correlates with cell volume, was also decreased in brain, liver, and spleen and increased in kidney tissue after half an hour of exposure. It is suggested that cell hydration is a second messenger through which the SMF exerts its influence.  相似文献   

17.
The purpose of this study was to investigate the effects of 9450-MHz microwaves and extremely low frequency magnetic fields (ELFMF) on the phagocytic activity of rat macrophages in control rats and those treated with vitamins C and E. In the microwave group, 24 albino Wistar rats were exposed to microwaves (2.65 mW/cm2, specific absorption rate [SAR]: 1.80 W/kg) for 1 h/day for 21 days. Thirty-two albino Wistar rats were divided into four groups (one control, three experimental) (n = 8). The rats in the first exposure group were only exposed to microwaves for 1 h per day for 21 days. In addition to exposure with microwaves as in the first experimental group, vitamins E and C (150 mg/kg/day) were injected intraperitoneally into the rats in the second and third exposure groups, respectively. In the magnetic field exposure group, 26 albino Wistar rats were divided into two groups: the sham (n = 12) and exposed groups (n = 14). The rats in the experimental group were exposed to ELFMF (50 Hz, 0.75 mT) for 3 h/day for 3 weeks. After completing the exposure period, the rats were sacrificed under ketalar anesthesia. The viability of isolated alveolar macrophages of rats in the microwave and ELF groups was determined and compared to sham groups. The results were analyzed with the Mann–Whitney U test. In the microwave group, the phagocytic activity in the experimental groups was found to be higher than the sham groups. However, with phagocytic activity in rats treated with both microwaves and vitamins, only the vitamin C group was significant (p < 0.05). In the magnetic field group, the phagocytic activity of rats exposed to ELFMF was lower than that of the sham group, but the results were not significant (p > 0.05). Rectal temperatures of microwaveexposed groups were found to be significantly higher compared to the control group (p < 0.05).  相似文献   

18.
On the basis of previous experience with biological effects of electromagnetic fields a potential effect of homogeneous sinusoidal magnetic field (50Hz, 10mT) on energy state of rat skeletal muscle was investigated. Two different total body exposures to magnetic field were selected: (1) repeated 1 hour exposure, 2 times a week for 3 months, and (2) acute 1.5 hour exposure (and the appropriate control groups). Important energy metabolites (adenosine triphosphate – ATP, creatine phosphate, creatine, lactate, pyruvate and inorganic phosphate) were analysed by enzymatic and spectroscopic methods in musculus gracilis cranialis.On the basis of the concentration of important energy metabolites the apparent Gibbs free energy of ATP hydrolysis and creatine charge was calculated. Our results demonstrate no influence of this low frequency magnetic field on the level of important energy metabolites in rat skeletal muscle. The conclusion of this study is that neither repeated exposure nor the acute exposure of rats to the sinusoidal magnetic field of given parameters has any important influence on the energy state of the skeletal muscle.  相似文献   

19.
In this work the effect of sinusoidal 50 Hz, 0.2 mT magnetic fields on the red blood cells (RBCs) and heart functions of Albino rats were investigated. Twenty-four male Albino rats were equally divided into four groups, A, B, C, and D. Animals from groups B were continuously exposed to the magnetic field for 15 days; and groups C and D, for 30 days. Group A was used as control. Animals from group D were kept after exposure to the magnetic field for a period of 45 days for delayed effect studies. The osmotic fragility and shape of RBCs' membrane and hemoglobin (Hb) structure tests were carried out for all groups. The dielectric relaxation of Hb molecules was measured in the frequency range of 0.1-10 MHz and the dielectric increment (Deltaepsilon), relaxation time (tau), molecular radius (r), and Cole-Cole parameter (alpha) were calculated for all groups. The ECG was measured for all animals before and after exposure to the magnetic field. The results indicated that exposure of the animals to 50 Hz, 0.2 mT magnetic fields resulted in the decrease of RBCs membrane elasticity and permeability and changes in the molecular structure of Hb. The ECG of the exposed animals was considerably altered. The data also indicated that there was no sign of repair in the newly generated RBCs structure and the ECG after removing the animals from the magnetic field, which indicates that the blood generating system was severely injured. The injuries in the heart of the animals were attributed to the loss of some physiological functions of the RBCs as a result of exposures of the rats to the magnetic field.  相似文献   

20.
During the experimental investigation performed in dogs and rats, by means of scanning electron microscopy of corrosive anatomical preparations, the spatial organization of all parts of the hepatic vascular bed (arterial, venous and lymphatic) has been studied, specific features of their components construction have been described. Within the limits of one hepatic lobule the number of vessels included in the portal vein system exceeds that of the arterial ones, originating from the proper hepatic artery system. In every part of the vascular bed the gradient of the form, orientation and pronouncement of the nuclei-containing zones in endotheliocytes and myocytes has been established. Various appliances participating in the blood and lymph stream regulation in different parts of the vascular bed have been revealed. As initial elements of the lymph bed, closed digital or loop-like capillaries should be regarded, they localize in the organ's connective tissue framework. Around the portal and hepatic veins and their branches, as well as around the biliary ducts, well developed plexuses of the lymphatic and blood capillaries and vessels localize, they are the main draining pathways of the organ. The degree of development and pronouncement of these plexuses depends on the lumen size in the formation they accompany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号