首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micronucleated erythrocytes are selectively removed from the peripheral circulation of normal rats. Splenectomy prevents this selective removal. In normal rats treated daily for 20 days with 0.2 mg/kg triethylenemelamine (TEM), micronucleated normochromatic (mature) erythrocytes did not accumulate in peripheral blood. In these same animals, the frequencies of micronucleated cells among polychromatic (newly formed) erythrocytes increased from 0.21 to 5.25 per thousand in peripheral blood and from 1.75 to 31.5 per thousand in bone marrow. Since both control and induced frequencies in peripheral blood were approximately 15% of those in bone marrow, the removal appears to be equally efficient for cells containing either spontaneously occurring or clastogen-induced micronuclei. In splenectomized rats treated daily for 11 days with 0.2 mg/kg TEM, the frequency of micronucleated normochromatic erythrocytes (NCEs) in the peripheral blood rose rapidly to 9 times the control value and remained elevated for 50-55 days, indicating a life span approximately equivalent to that of normal erythrocytes. Among splenectomized rats exposed to either 0.15 mg/kg triethylenemelamine, 6.5 mg/kg cyclophosphamide, or 300 mg/kg urethane for periods exceeding the erythrocyte life span, the incidences of micronucleated NCEs in the peripheral blood rose steadily from a control value of 1.0 per thousand to maximum values of 15.0, 12.7 and 8.9 per thousand, respectively. During these extended exposures, the mean frequencies of micronucleated polychromatic erythrocytes (PCEs) in peripheral blood increased from a spontaneous value of 0.9 per thousand to 23.0, 13.0 and 6.6 per thousand, respectively, reflecting the frequencies among PCEs in the bone marrow and approximating the maximum values among NCEs in the peripheral blood. Thus, the frequency of micronucleated erythrocytes in the peripheral blood of splenectomized rats can be used as an index of both acute and cumulative chromosomal damage, while in normal rats the use of peripheral blood for cytogenetic monitoring is restricted by the selective removal of these micronucleated cells.  相似文献   

2.
We have investigated the effect of gamma-radiation on the frequency of bone marrow micronucleated erythrocytes in seven inbred strains of adult male mice. Twenty animals of each strain viz. Swiss, C57BL/6, C57BR/cd, C3H, CBA, DBA, and AKR were irradiated at 0.0, 0.125, 0.25, 0.50, and 1.00Gy of gamma-rays at a dose rate of 0.46Gy/min using a 60Co-teletharapy machine. Animals were sacrificed 24h post-irradiation, bone marrow smears were made and stained in May-Grunwald Giemsa for evaluating the frequency of micronucleated erythrocytes as indicators of chromosomal damage. About 2000 polychromatic erythrocytes (PCEs) and the corresponding normochromatic erythrocytes (NCEs) were scored for each mouse. Thus, at least 8000 PCEs were scored for each dose point in all the groups. The spontaneous frequency of mn-PCEs per thousand (per thousand ) cells varied considerably among the strains with C57BR/cd (3.47 per thousand ) exhibiting highest as compared to CBA (2.47 per thousand ) and DBA (2.35 per thousand). Radiation exposure, even at lowest dose of 0.125Gy, induced a significant increase in the frequency of mn-PCEs and a dose dependent response was observed among all the strains. However, the animals irradiated at lower doses (0.125-0.50Gy) showed marked differences in the extent of radiation induced chromosomal damage among the various genotypes. At highest dose of radiation (1.00Gy), genotype dependent variability in the frequency of mn-PCEs was not so marked but relatively comparable among the various strains. This study clearly shows that the magnitude of variability of radiation induced chromosomal damage among different strains of mouse can be different at different doses. Therefore, use of single dose point comparisons and/or use of only higher doses of radiation for ascertainment of genotype dependent variability in mouse may lead to erroneous conclusions.  相似文献   

3.
An improved antikinetochore antibody technique was established in the mouse micronucleus assay to simultaneously evaluate toxicity, clastogenicity and aneugenicity induced by various test agents. The procedure involved the use of cellulose column fractionated cytospun slides for analysis. The staining method consisted of sequential treatment of slides with crest serum, fluorosceinated goat-antihuman and swine-antigoat antibodies, and propidium iodide. In this method, polychromatic erythrocytes (PCEs, dark red), normochromatic erythrocytes (NCEs, green), chromosome(s)/fragments/micronuclei (orange), and kinetochores (yellow), are identified using the same filter setting under blue excitation (440-490 nm) with a barrier filter at 520 nm. Using this method, three agents, cyclophosphamide, X-rays and vincristine were tested for micronucleus/aneuploidy induction and bone marrow toxicity. The aneugen, vincristine, and clastogens, X-rays and cyclophosphamide, induced predominantly kinetochore positive (K+) and negative (K-) micronucleated PCEs, respectively. At the doses tested, cyclophosphamide caused a slight but statistically significant decrease in PCEs in females, and other agents did not produce any severe bone-marrow toxicity in either male or female mice. These results are comparable with the results reported in the literature on these compounds with various methods and thus demonstrate the usefulness of this assay in distinguishing clastogenicity from aneugenicity and in evaluating toxicity.  相似文献   

4.
Mutagenic effects of carbosulfan,a carbamate pesticide   总被引:6,自引:0,他引:6  
The genotoxic effects of carbosulfan were evaluated using chromosome aberration (CA), bone marrow micronucleus (MN) and sperm abnormality assays in mice. All the three acute doses (1.25, 2.5 and 5mg/kg) of carbosulfan induced significant dose-dependent increase in the frequency of CA (P<0.02), micronucleated polychromatic erythrocytes (PCEs) (P<0.05) and sperm head abnormalities (P<0.05) but did not affect the total sperm count. The highest acute dose of carbosulfan induced >7-fold increase in the frequency of CA, >3.5-fold increase in the frequency of micronucleated PCEs and >4.6-fold increase in the frequency of sperms with abnormal head morphology following intraperitoneal exposure as compared to the untreated controls. The present findings suggest that carbosulfan is a potent genotoxic agent and may be regarded as a potential germ cell mutagen also.  相似文献   

5.
Abstract

I investigated whether long term low dose exposure to acrylamide increased micronucleus frequency in rat bone marrow polychromatic erythrocytes (PCEs). Twenty-five male and 25 female Wistar rats were used. Animals of each sex were segregated into two treatment groups and one control group. Each treatment group consisted of ten animals and each control group consisted of five animals. Acrylamide, 2 or 5 mg/kg/day, was administered to the treatment groups in their drinking water for 90 days. Twenty-four hours after the last treatment, bone marrow samples were obtained and analyzed for the frequency of micronucleated polychromatic erythrocytes (MNPCEs). The cytotoxic effect of acrylamide on bone marrow also was tested by assessing the polychromatic erythrocyte/normochromatic erythrocyte (PCE/NCE) ratio. Both doses of acrylamide significantly increased the frequency of MNPCEs in both male and female rats. Acrylamide also decreased the PCE/NCE ratio in both sexes compared to the control group. My study showed that chronic low dose exposure to acrylamide increased the formation of micronuclei in PCEs of male and female rat bone marrow.  相似文献   

6.
The frequency of micronucleated polychromatic erythrocytes (PCEs) in mouse bone marrow was assessed after administration of dipyridamole and/or adenosine monophosphate (AMP) to nonirradiated mice or to mice irradiated 15 min later with a sublethal dose of 6.5 Gy gamma rays. In nonirradiated mice, the administration of the drugs increased the frequency of micronucleated PCEs significantly (by 108%). In contrast, in irradiated mice, the number of radiation-induced micronucleated PCEs was significantly decreased if the mice had been pretreated with dipyridamole or AMP alone (by 24% after administration of each of the compounds) and in particular after administration of the drugs in combination (by 36%).  相似文献   

7.
The effect of route of administration on the outcome of the micronucleus test was studied in 2 laboratories by administering the model chemical benzene intraperitoneally (i.p.) and orally (p.o.) to 2 strains of mice: MS/Ae and CD-1. On the basis of results obtained in a small-scale acute toxicity study and in a pilot micronucleus test, full-scale micronucleus tests were performed with a 24-h sampling time at doses of 250, 500, 1000, and 2000 mg/kg i.p. and 500, 1000, 2000, and 4000 mg/kg p.o. In both strains of mice, a higher incidence of micronucleated polychromatic erythrocytes (MNPCEs) was observed after p.o. administration. The ratio of polychromatic erythrocytes (PCEs) to total erythrocytes decreased more markedly at higher doses i.p. in both strains. Thus, benzene induced more micronuclei via the p.o. route, while inhibitory effects on bone marrow cells were stronger after i.p. administration.  相似文献   

8.
Toluene diisocyanate (TDI) and 4,4'-methylenediphenyl diisocyanate (MDI), used in the production of polyurethane foam, are well known for their irritating and sensitizing properties. Contradictory results have been obtained on their genotoxicity. We investigated the genotoxicity and protein binding of inhaled TDI and MDI in mice by examining micronucleated polychromatic erythrocytes (PCEs) in bone marrow and peripheral blood and TDI- and MDI-derived adducts in hemoglobin. Male C57Bl/6J mice (8 per group) were exposed head-only to TDI vapour (mean concentrations 1.1, 1.5, and 2.4mg/m(3); the mixture of isomers contained, on the average, 63% 2,4-TDI and 37% 2,6-TDI) or MDI aerosol (mean concentrations 10.7, 20.9 and 23.3mg/m(3)), during 1h/day for 5 consecutive days. Bone marrow and peripheral blood were collected 24h after the last exposure. Inhalation of TDI caused sensory irritation (SI) in the upper respiratory tract, and cumulative effects were observed at the highest exposure level. Inhalation of MDI produced SI and airflow limitation, and influx of inflammatory cells into the lungs. Hemoglobin adducts detected in the exposed mice resulted from direct binding to globin of 2,4- and 2,6-TDI and MDI, and dose-dependent increases were observed especially for 2,4-TDI-derived adducts. Adducts originating from the diamines of TDI (toluene diamine) or MDI (methylene dianiline) were not observed. No significant increase in the frequency of micronucleated PCEs was detected in the bone marrow or peripheral blood of the mice exposed to TDI or MDI. The ratio of PCEs and normochromatic erythrocytes (NCEs) was reduced at the highest concentration of MDI, and a slight reduction of the PCE/NCE ratio, dependent on cumulative inhaled dose, was also seen with TDI. Our results indicate that inhalation of TDI or MDI (1h/day for 5 days), at levels that induce toxic effects and formation of TDI- or MDI-specific adducts in hemoglobin, does not have detectable genotoxic effects in mice, as studied with the micronucleus assay.  相似文献   

9.
The aim of the present work was to evaluate the modulatory role of beta-carotene on the radiation-induced changes in certain biochemical and cytogenetic parameters. beta-Carotene was given by gavage at a dose of 5 mg/kg body weight for 7 consecutive days before whole body gamma irradiation with 7 Gy (single dose). The levels of beta-carotene in plasma, thiobarbituric acid-reactive substances (TBARS) in plasma and liver, the activities of superoxide dismutase (SOD) and catalase in blood and liver were the selected parameters. Furthermore, the frequency of micronuclei (MN) of polychromatic erythrocytes (PCEs), normochromatic erythrocytes (NCEs), the ratio of PCEs/NCEs and the mitotic index (MI) of bone marrow cells were also evaluated. The biochemical and cytogenetic determinations were carried out 1, 24, and 72 h after radiation exposure.The results obtained revealed that administration of beta-carotene pre-irradiation significantly inhibited the decrease in plasma beta-carotene, significantly reduced the levels of TBARS in plasma and liver. Significant protection of the radiation-induced changes in the activities of SOD and catalase was also recorded in the blood and liver of beta-carotene-treated and -irradiated rats. beta-Carotene resulted in significant inhibition in the frequency of radiation-induced MN, as well as in the ratio of PCEs/NCEs and the MI of bone marrow cells. These results suggest that beta-carotene as a natural product with its antioxidant capacity and capability of quenching singlet oxygen, could play a modulatory role against the cellular damage affected by free radicals induced by whole body irradiation.  相似文献   

10.
Oller AR  Erexson G 《Mutation research》2007,626(1-2):102-110
Workplace exposures to mixtures of nickel compounds have been associated with excess respiratory cancer risk. Animal studies with individual nickel compounds indicate that not all nickel substances have the same potency or potential to induce tumors. The bioavailability of nickel ions at critical cellular sites seems to be important to determine the potential of a substance to induce tumors in animals, but much less is understood about the exact nature (genotoxic or non-genotoxic) of the nickel effects. Within many regulatory frameworks (e.g., European Union), substances are classified for mutagenicity based on the available data and this classification will often influence the mode of action assigned to carcinogenic substances and the way in which risk assessment will be conducted. The objective of this study was to evaluate the ability of nickel sulfate hexahydrate to induce micronuclei in polychromatic erythrocytes (PCEs) in rat bone marrow. This study was conducted according to OECD and EU protocol guidelines. In the dose range-finding assays, the maximum tolerated dose was estimated to be 500 mg/kg/day. The doses used in the micronucleus assay were 125, 250, and 500 mg/kg/day. At least 2000 PCEs per animal were analyzed for micronuclei in PCEs. Cytotoxicity was assessed by scoring a minimum of 500 consecutive total polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). Nickel sulfate hexahydrate did not induce statistically significant increases in micronucleated PCEs at any dose examined. The negative results in the present study contribute significantly to the weight of evidence evaluation of the mutagenicity (chromosomal level) of nickel substances. These results are consistent with a non-genotoxic mode of action for soluble nickel that could explain the enhancement of cancer risk seen among refinery workers with mixed exposures and its lack of carcinogenicity in animal studies with single exposures.  相似文献   

11.
In this study, the genotoxic and cytotoxic potential of extremely low frequency magnetic fields (ELF-MF) was investigated in Wistar rat tibial bone marrow cells, using the chromosomal aberration (CA) and micronucleus (MN) test systems. In addition to these test systems, we also investigated the mitotic index (MI), and the ratio of polychromatic erythrocytes (PCEs) to normochromatic erythrocytes (NCEs). Wistar rats were exposed to acute (1 day for 4h) and long-term (4h/day for 45 days) to a horizontal 50Hz, 1mT uniform magnetic field generated by a Helmholtz coil system. Mitomycin C (MMC, 2mg/kg BW) was used as positive control. Results obtained by chromosome analysis do not show any statistically significant differences between the negative control and both acute and long-term ELF-MF exposed samples. When comparing the group mean CA of long-term exposure with the negative control and acute exposure, the group mean of the long-term exposed group was higher, but this was not statistically significant. However, the mean micronucleus frequency of the longer-term exposed group was considerably higher than the negative control and acutely exposed groups. This difference was statistically significant (p<0.01). The results of the MI in bone marrow showed that the averages of both A-MF and L-MF groups significantly decreased when compared to those in the negative control (p<0.001 and p<0.01, respectively). No significant differences were found between the group mean MI of A-MF exposure with L-MF. We found that the average of PCEs/NCEs ratios of A-MF exposed group was significantly lower than the negative control and L-MF exposed groups (p<0.001 and p<0.01, respectively). In addition, the group mean of the PCEs/NCEs ratios of L-MF was significantly lower than negative control (p<0.01). We also found that the MMC treated group showed higher the number of CA and the frequency of MN formation when compared to those in all other each groups (p-values of all each groups <0.01) and also MMC treated group showed lower MI and the PCEs/NCEs ratios when compared to those in all other each groups (p-values of all groups <0.01). These observations indicate the in vivo suspectibility of mammals to the genotoxicity potential of ELF-MF.  相似文献   

12.
In the present study, we describe the effects of the concentration and route of administration of non-radioactive cesium chloride (CsCl) in inducing micronuclei in mouse bone marrow polychromatic erythrocytes (PCEs). When the dose of 500mg/kg body weight was administered perorally (p.o.), no significant incidence of micronuclei was detected. However, when the same dose was administered intraperitoneally (i.p.), a significant induction of micronuclei in PCEs was observed compared to control. At the dose of 1000mg/kg, both routes were efficient, with no significant difference in micronucleus frequencies. We conclude that both the p.o. and i.p. routes are efficient in inducing micronuclei, with the i.p. route being more efficient when lower CsCl doses are used.  相似文献   

13.
The prevention of benzene-induced genotoxicity in mice by indomethacin   总被引:1,自引:0,他引:1  
Benzene is a myelotoxin which affects hemopoietic progenitor cells leading to bone-marrow depression as well as a genotoxin which causes chromosomal abnormalities including micronucleus formation. We have demonstrated previously that benzene administered to DBA/2 or C57B1/6 mice causes bone-marrow depression and increased prostaglandin E2 levels in bone marrow; both of these effects can be prevented by the coadministration of indomethacin, a selective inhibitor of prostaglandin synthase. We report, herein, that benzene (400-600 mg/kg body weight), under conditions where it depresses bone-marrow cellularity, also induces an increase in the frequency of micronucleus formation in polychromatic erythrocytes of C57B1/6 mice which is also prevented by the coadministration of indomethacin at levels that do not inhibit cytochrome P450 or myeloperoxidase. In Swiss Webster wild-type mice doses of benzene from 400 to 1000 mg/kg were without effect on marrow cellularity, but did induce the formation of micronucleated polychromatic erythrocytes which could be prevented by indomethacin. In contrast, DBA/2 mice, a strain highly sensitive to benzene, exhibited significant bone-marrow depression at a dose of benzene of 100 mg/kg body weight. Even at this low dose, benzene is too toxic toward developing erythrocytes to allow the evaluation of micronucleus formation. The frequency of induction of micronucleated polychromatic erythrocytes by benzene thus depends on the strain of mouse used. Furthermore, micronucleus formation appears to be an early and very sensitive indicator of benzene toxicity. A possible role for prostaglandin H synthase in the geno- and myelo-toxicity of benzene is discussed.  相似文献   

14.
A dose-dependent increase in micronucleated polychromatic erythrocytes was observed in the bone marrow of male C57B1/6 mice 30 h after a single intraperitoneal injection of vinyl acetate (250, 500, 1000 or 2000 mg/kg b.wt.; (9-14 animals per group). The effect was statistically significant at 1000 mg/kg (1.33 +/- 0.29% vs. 0.6 +/- 0.10% in olive oil-treated controls) and at 2000 mg/kg (1.57 +/- 0.19%) of vinyl acetate. These doses were fatal to 6 (1000 mg/kg) and 8 (2000 mg/kg) out of 14 animals in both groups. The ratio of polychromatic to normochromatic cells decreased as a function of vinyl acetate dose. Cyclophosphamide (20 mg/kg), used as a positive control chemical, induced a clear increase in micronucleated polychromatic erythrocytes (2.07 +/- 0.20%). None of the treatments affected the number of micronuclei in normochromatic erythrocytes. In human whole-blood lymphocyte cultures, micronucleus induction by a 48-h treatment with vinyl acetate (0.125, 0.25, 0.5, 1 and 2 mM; 24 h after culture initiation) was studied in lymphocytes with preserved cytoplasm from smear slides prepared by a method involving the removal of erythrocytes at harvest by sodium cyanide treatment to improve preparation quality. The frequency of micronucleated lymphocytes reached a peak at 0.5 mM (3.2 +/- 1.0% vs. 0.9 +/- 0.1% in control cultures) and 1 mM (3.1 +/- 0.7%), with a decline at 2 mM probably because of a toxic effect resulting in mitotic inhibition.  相似文献   

15.
The present study was aimed to investigate the ability of cadmium (Cd) and nickel (Ni) to induce genotoxicity, cytotoxicity, and oxidative stress in bone marrow cells of male mice. Aneuploidy and chromosomal aberrations (CA) showed that Cd is a stronger mutagen than Ni. Cd and Ni increased significantly the incidences of micronucleated polychromatic erythrocytes (PCEs). Also, the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PCE/NCE) suggests that treatment with higher doses of the two metals increased the cytotoxicity. Numerical chromosomal aberrations increased hypoploidy with the treatment which reached two to three times of the frequency of hyperploidy. The results showed that both Cd and Ni are aneugenic that act on kinetochores and cause malsegregation of chromosomes as well as being clastogenic. Both Cd and Ni increased single-break aberrations and also Cd and Ni were found to induce significant DNA damage in mouse bone marrow cells as assessed by the comet assay. In addition to the cytotoxicity results, biochemical analysis in bone marrow revealed a dose-dependent increase of oxidative stress markers. According to the results obtained, genotoxicity and cytotoxicity effects of cadmium and nickel in vivo are dose-dependent and are associated with oxidative stress and their combined effect is less than their expected additive effect, and it could be concluded that there are no synergistic effects resulting from the combined application of both metals.  相似文献   

16.
In the present study the induction of micronuclei (MN) and nuclear abnormalities (NA) in erythrocytes of mosquitofish (Gambusia affinis) (Baird & Girard 1853) was studied. Fish were exposed to three different concentrations of lambda-cyhalothrin (LCT) (1×10(-4)μg/l, 2×10(-4)μg/l, 4×10(-4)μg/l) for periods of 6, 12, 24, and 48h. NA (notched, lobed, blebbed nuclei), MN, bi-nucleated cells, and the ratio of polychromatic erythrocytes (PCEs) to normochromatic erythrocytes (NCEs) were evaluated to assess genotoxicity and cytotoxicity. LCT significantly induced MN and NA in erythrocytes of G. affinis. The PCE/NCE ratio was also decreased after 24- and 48-h treatments of 4×10(-4)μg/l LCT. The results show that LCT has genotoxic and cytotoxic potential on G. affinis.  相似文献   

17.
Using the micronucleus test to evaluate the mutagenic effect of 5,5-diphenylhydantoin (DPH) on bone marrow polychromatic erythrocytes, male Balb-C mice were treated with the drug in single and multiple injection tests. A significant increase in the frequency of micronucleated polychromatic erythrocytes (MPE), P less than 0.05, was found when the mice received a single injection of DPH at doses of 0.5 and 1.0 mg/kg, and this frequency did not increase at higher doses. When mice were treated 3 times, at 24-h intervals, with 1.0 mg/kg of DPH, a significant increase in MPE was also observed (P less than 0.05) but this was lower than when they received a single injection of the same dose. A cytotoxic effect of NaOH, 0.1 N, which was used as solvent, was also observed either when alone or when DPH (1.0 mg/kg) was injected 3 times. This effect was comparable to the one produced by mitomycin C (MMC) at a dose of 0.5 mg/kg.  相似文献   

18.
The hematological micronucleus test is regarded as an indicator of the clastogenic effect of chemicals and acute cytogenetic damage. The test can be carried out in red blood cells of the bone marrow and of the spleen, as well as in peripheral erythrocytes. We have determined the precise background values of micronucleated red blood cells for the peripheral blood of BALB/c, DBA/2, and NMRI mice. Bleeding, phenylhydrazine-induced hemolysis, and splenectomy generated an increase of micronucleated erythrocytes in the peripheral blood of mice. Our data thus demonstrate that such factors should be taken into consideration when the micronucleus test is used for screening the genotoxic potential of chemicals. Furthermore, the micronucleus-inducing effect of cyclophosphamide was studied in normal and splenectomized mice and, in addition, a comparison of the sensitivity of the micronucleus test was carried out in peripheral blood and bone marrow after cyclophosphamide treatment. Our data demonstrate that the kinetics of micronucleus formation were similar in normal and in splenectomized mice in which the micronucleus levels had returned to normal. The comparison of micronucleus formation in bone marrow and peripheral blood after cyclophosphamide treatment revealed the generation of similar quantities of micronucleated red blood cells in both tissues. The physiological mechanisms of micronucleus formation and removal and the potential role of chemically induced spleen damage during this process are discussed; the usefulness of the peripheral micronucleus test as a simple, rapid, and animal-saving modification of the standard bone marrow test is evaluated.Abbreviations CP cyclophosphamide - MN micronuclei - MNCE micronucleated normochromatic erythrocytes - MNPCE micronucleated polychromatic erythrocytes - MNRBC micronucleated red blood cells - NCE normochromatic erythrocytes - PCE polychromatic erythrocytes  相似文献   

19.
The hematological micronucleus test is regarded as an indicator of the clastogenic effect of chemicals and acute cytogenetic damage. The test can be carried out in red blood cells of the bone marrow and of the spleen, as well as in peripheral erythrocytes. We have determined the precise background values of micronucleated red blood cells for the peripheral blood of BALB/c DBA/2, and NMRI mice. Bleeding, phenylhydrazine-induced hemolysis, and splenectomy generated an increase of micronucleated erythrocytes in the peripheral blood of mice. Our data thus demonstrate that such factors should be taken into consideration when the micronucleus test is used for screening the genotoxic potential of chemicals. Furthermore, the micronucleus-inducing effect of cyclophosphamide was studied in normal and splenectomized mice and, in addition, a comparison of the sensitivity of the micronucleus test was carried out in peripheral blood and bone marrow after cyclophosphamide treatment. Our data demonstrate that the kinetics of micronucleus formation were similar in normal and in splenectomized mice in which the micronucleus levels had returned to normal. The comparison of micronucleus formation in bone marrow and peripheral blood after cyclophosphamide treatment revealed the generation of similar quantities of micronucleated red blood cells in both tissues. The physiological mechanisms of micronucleus formation and removal and the potential role of chemically induced spleen damage during this process are discussed; the usefulness of the peripheral micronucleus test as a simple, rapid, and animal-saving modification of the standard bone marrow test is evaluated.Abbreviations CP cyclophosphamide - MN micronuclei - MNCE micronucleated normochromatic erythrocytes - MNPCE micronucleated polychromatic erythrocytes - MNRBC micronucleated red blood cells - NCE normochromatic erythrocytes - PCE polychromatic erythrocytes  相似文献   

20.
The frequency of micronucleated polychromatic erythrocytes and the polychromatic to normochromatic erythrocyte ratio was studied in BalbC mice treated with four azo dyes: Direct Blue 74, Direct Blue 296, Direct Blue 297 and Direct Green 98 at two (40and 80% LD50/kg body weight) concentrations. None of the studied compounds revealed a genotoxic activity in the micronucleus test. However, it was found that two dyes, Direct Blue 297 at doses 40% and 80% LD50 and Direct Green 98 at dose 80% LD50, cause a significant decrease in the ratio of polychromatic to normochromatic erythrocytes in bone marrow of mice, which means that at the doses specified above they can affect the proliferation of the blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号