首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acridine orange (AO), dinitrobenzoic acid (DNB), bromocresol green (BCG), bromophenol blue (BPB), and methylene blue (MB) were chosen as model aromatic compounds of different polarity, charge, and solubility in water to examine the effects of solute properties on hydrophobic adsorption. These compounds show strict structural similarities to some herbicides and other potential xenobiotic pollutants and exhibit distinct absorption maxima in the visible region, which allows for their easy determination. A well-decomposed peat (medisaprist) at four different stages of drying was used to determine compound adsorption/desorption influences based on the degree of hydrophobicity and charge density of an organic surface. Adsorption and desorption isotherms were investigated using the batch equilibration method and determining the concentration of free chemicals by UV-Vis spectrophotometry. AO had a high tendency of adsorption and was strongly sorbed on peat samples that had been air-dried for 12 months. The lower Freundlich coefficient values found for MB when compared with AO at all the drying stages of the peat indicated that electrostatic attraction has a secondary contribution to sorption. On the contrary, the higher energy that must be spent to break solute-solvent interactions in the case of charged or polar molecules is one of the main factors in determining the position of the equilibrium. For a given solute, Kf values varied with the degree of hydrophobicity and the charge density of the surface, but again solute-solvent interactions appear to be much more important in the overall energy balance of hydrophobic pollutants than the electrostatic sorbate-sorbent interactions. A change in the solution pH does not improve the adsorption of the relatively polar DNB molecule, but sorption increases strongly for BCG and BPB when these molecules are in non-dissociated forms. The larger increase in BPB sorption observed on H+ saturated peat suggests that the degree of interaction increases with the suppression of the negative charge, but charge repulsion has a small effect in preventing adsorption of molecules bearing hydrophobic groups such as BCG. Desorption results differed depending on the chemical structure of the compound examined. For example, with AO there was no desorption from the more hydrophobic peat surfaces. A negative hysteresis was observed for DNB; the magnitude of hysteresis, evaluated using the ratio of Freundlich coefficients for adsorption and desorption, increased with the drying stage of the sorbent and was larger on oven-dried samples.  相似文献   

2.
Hybrid polar compounds (HPCs) are powerful inducers of terminal differentiation of various types of tumors, including Friend murine erythroleukemia cells (MELCs). They are known to act synergistically with an increase in the extracellular concentration of cations, which causes a positive shift in the negative value of the ionic surface potential. Two HPCs, hexamethylenebisacetamide (HMBA) and suberoylanilide hydroxamic acid (SAHA), were adsorbed on self-assembled phospholipid monolayers supported on a mercury drop and the shift in the surface dipole potential chi of the lipid film due to their adsorption was estimated from charge measurements. At their optimal concentrations for inducing MELC terminal differentiation (5 mM for HMBA and 2.6 microM for SAHA), these HPCs cause a chi shift of about 15-20 mV, positive toward the hydrocarbon tails, both on neutral phosphatidylcholine films and on negatively or positively charged phosphatidylserine films. This strongly suggests that the nonspecific effect of HPCs of different structure in inducing cancer cells to rescue their differentiation program is related to a positive chi shift on the extracellular side of the cell membrane.  相似文献   

3.
Methods of separating N-acetyl-1,6-diaminohexane (NADAH) and its immobilization to diol-silica have been developed. Hexamethylene bisacetamide (HMBA) and its metabolite NADAH are used as inducers of leukemia cell differentiation. The inducing mechanism of HMBA is still not clear. Experiments show that HMBA and NADAH undergo relatively strong hydrophobic reactions and do not readily undergo ion-exchange with the proteins of the cytosolic fraction of HL-60 cells during immobilization of NADAH; the retention time of the proteins was longer than that of the phosphatides. These results show that the adsorption of HMBA and NADAH to proteins was higher than that to phosphatides. The expected biospecific receptor binding with HMBA has not been found.  相似文献   

4.
Small amphiphilic compounds (M(r)<200 Da) such as anaesthetics and hexane derivatives with different polar groups produced a concentration-dependent acceleration of the slow passive transbilayer movement of NBD-labelled phosphatidylcholine in the human erythrocyte membrane. Above a threshold concentration characteristic for each compound, the flip rate gradually increased at increasing concentrations in the medium. For compound concentrations required to produce a defined flip acceleration, corresponding membrane concentrations were estimated using reported octanol/water partition coefficients. The effective threshold membrane concentrations (50-150 mmol l(-1)) varied in the order: hexylamine>isoflurane=hexanoic acid>hexanol=chloroform>hexanethiol=1,1,2,2-tetrachloroethane>chlorohexane. Apolar hexane, which mainly distributes in the apolar membrane core, was much less effective and supersaturating concentrations were required to enhance flip. Localization of the drug at the lipid-water interface seems to be required for flip acceleration. Such a localization may increase the lateral pressure in this region and the bilayer curvature stress with concomitant decrease of order and rigidity at the interface. This unspecific bilayer perturbation is proposed to enhance the probability of formation of hydrophobic defects in the bilayer, facilitating penetration of the polar head group of the phospholipid into the apolar membrane core.  相似文献   

5.
1976年Reuben等[1]发现六亚甲基二乙酰胺(hexamethylenebisacetallllde,HMBA)在5×10-3mol/L浓度可诱导99%以上的Friend红白血病细胞分化.已报道HMBA在体外可引起动物多种实体瘤和白血病细胞系的分化[2].阐明HMBA诱导肿瘤细胞分化的机制有着重要意义.HMBA去掉一个乙酸基后单乙酸己二胺(N-acetyl-diallllnohexaneNADAH):CH3CONHCHZCHZCHZCHZCHZCHZNHZ,具有与HMBA几乎同样诱导肿瘤细胞分化的活性[3,'」,由于NADAH有一个活泼基因NHZ,为固相化研究其诱导肿瘤细胞分化机理提供了可能。通过两步合成将…  相似文献   

6.
Cherstvy AG 《Biopolymers》2012,97(5):311-317
We explore the properties of adsorption of flexible polyelectrolyte chains in confined spaces between the oppositely charged surfaces in three basic geometries. A method of approximate uniformly valid solutions for the Green function equation for the eigenfunctions of polymer density distributions is developed to rationalize the critical adsorption conditions. The same approach was implemented in our recent study for the "inverse" problem of polyelectrolyte adsorption onto a planar surface, and on the outer surface of rod-like and spherical obstacles. For the three adsorption geometries investigated, the theory yields simple scaling relations for the minimal surface charge density that triggers the chain adsorption, as a function of the Debye screening length and surface curvature. The encapsulation of polyelectrolytes is governed by interplay of the electrostatic attraction energy toward the adsorbing surface and entropic repulsion of the chain squeezed into a thin slit or small cavities. Under the conditions of surface-mediated confinement, substantially larger polymer linear charge densities are required to adsorb a polyelectrolyte inside a charged spherical cavity, relative to a cylindrical pore and to a planar slit (at the same interfacial surface charge density). Possible biological implications are discussed briefly in the end.  相似文献   

7.
Small amphiphilic compounds (Mr<200 Da) such as anaesthetics and hexane derivatives with different polar groups produced a concentration-dependent acceleration of the slow passive transbilayer movement of NBD-labelled phosphatidylcholine in the human erythrocyte membrane. Above a threshold concentration characteristic for each compound, the flip rate gradually increased at increasing concentrations in the medium. For compound concentrations required to produce a defined flip acceleration, corresponding membrane concentrations were estimated using reported octanol/water partition coefficients. The effective threshold membrane concentrations (50–150 mmol l?1) varied in the order: hexylamine>isoflurane=hexanoic acid>hexanol=chloroform>hexanethiol=1,1,2,2-tetrachloroethane>chlorohexane. Apolar hexane, which mainly distributes in the apolar membrane core, was much less effective and supersaturating concentrations were required to enhance flip. Localization of the drug at the lipid–water interface seems to be required for flip acceleration. Such a localization may increase the lateral pressure in this region and the bilayer curvature stress with concomitant decrease of order and rigidity at the interface. This unspecific bilayer perturbation is proposed to enhance the probability of formation of hydrophobic defects in the bilayer, facilitating penetration of the polar head group of the phospholipid into the apolar membrane core.  相似文献   

8.
The environment of both the hydrophilic and hydrophobic sides of alpha-helical delta-toxin are probed by tryptophanyl (Trp) fluorescence, when self-association occurs in solution and on binding to membranes. The fluorescence parameters of staphylococcal delta-toxin (Trp15 on the polar side of the amphipathic helix) and synthetic analogues with single Trp at position 5 or 16 (on the apolar side) were studied. The time-resolved fluorescence decays of the peptides in solution show that the local environment of their single Trp is always heterogeneous. Although the self-association degree increases with concentration, as shown by fluorescence anisotropy decays, the lifetimes (and their statistical weight) of Trp16 do not change, contrary to what is observed for Trp15. The first step of self-association is then driven by hydrophobic interactions between apolar sides of alpha-helices, whilst further oligomerization involves their polar side (Trp15) via electrostatic interactions. This is supported by dissociation induced by salt. For all self-associated peptides, the polarity of the Trp microenvironment was not significantly modified upon binding to phospholipid vesicles, as indicated by the small shifts of the fluorescence emission spectra and lifetime values. However, the relative populations of the lifetime classes vary with bound-peptide density similar to the rates of their global motions in bilayers or smaller particles. Quenching experiments by water or lipid-soluble compounds show changes of the orientation of membrane-inserted peptides, from probably dimers lying flat at the interface at low peptide density, to oligomers spanning the membrane and inducing membrane fragmentation at high peptide density.  相似文献   

9.
Membrane electrostatics   总被引:16,自引:0,他引:16  
In conclusion, charged membrane together with their adjacent electrolyte solution form a thermodynamic and physico-chemical entity. Their surfaces represent an exceptionally complicated interfacial system owing to intrinsic membrane complexity, as well as to the polarity and often large thickness of the interfacial region. Despite this, charged membranes can be described reasonably accurately within the framework of available theoretical models, provided that the latter are chosen on the basis of suitable criteria, which are briefly discussed in Section A. Interion correlations are likely to be important for the regular and/or rigid, thin membrane-solution interfaces. Lateral distribution of the structural membrane charge is seldom and charge distribution perpendicular to the membranes is nearly always electrostatically important. So is the interfacial hydration, which to a large extent determines the properties of the innermost part of the interfacial region, with a thickness of 2-3 nm. Fine structure of the ion double-layer and the interfacial smearing of the structural membrane charge decrease whilst the surface hydration increases the calculated value of the electrostatic membrane potential relative to the result of common Gouy-Chapman approximation. In some cases these effects partly cancel-out; simple electrostatic models are then fairly accurate. Notwithstanding this, it is at present difficult to draw detailed molecular conclusions from a large part of the published data, mainly owing to the lack of really stringent controls or calibrations. Ion binding to the membrane surface is a complicated process which involves charge-charge as well as charge-solvent interactions. Its efficiency normally increases with the ion valency and with the membrane charge density, but it is also strongly dependent on the physico-chemical and thermodynamic state of the membrane. Except in the case of the stereospecific ion binding to a membrane, the relatively easily accessible phosphate and carboxylic groups on lipids and integral membrane proteins are the main cation binding sites. Anions bind preferentially to the amine groups, even on zwitterionic molecules. Membrane structure is apt to change upon ion binding but not always in the same direction: membranes with bound ions can either expand or become more condensed, depending on the final hydrophilicity (polarity) of the membrane surface. The more polar membranes, as a rule, are less tightly packed and more fluid. Diffusive ion flow across a membrane depends on the transmembrane potential and concentration gradients, but also on the coulombic and hydration potentials at the membrane surface.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Pawlak Z  Oloyede A 《Bio Systems》2008,94(3):193-201
Phospholipid (PL) molecules form the main structure of the membrane that prevents the direct contact of opposing articular cartilage layers. In this paper we conceptualise articular cartilage as a giant reverse micelle (GRM) in which the highly hydrated three-dimensional network of phospholipids is electrically charged and able to resist compressive forces during joint movement, and hence loading. Using this hypothetical base, we describe a hydrophilic-hydrophilic (HL-HL) biopair model of joint lubrication by contacting cartilages, whose mechanism is reliant on lamellar cushioning. To demonstrate the viability of our concept, the electrokinetic properties of the membranous layer on the articular surface were determined by measuring via microelectrophoresis, the adsorption of ions H, OH, Na and Cl on phospholipid membrane of liposomes, leading to the calculation of the effective surface charge density. The surface charge density was found to be -0.08+/-0.002cm(-2) (mean+/-S.D.) for phospholipid membranes, in 0.155M NaCl solution and physiological pH. This value was approximately five times less than that measured in 0.01M NaCl. The addition of synovial fluid (SF) to the 0.155M NaCl solution reduced the surface charge density by 30% which was attributed to the binding of synovial fluid macromolecules to the phospholipid membrane. Our experiments show that particles charge and interact strongly with the polar core of RM. We demonstrate that particles can have strong electrostatic interactions when ions and macromolecules are solubilized by reverse micelle (RM). Since ions are solubilized by reverse micelle, the surface entropy influences the change in the charge density of the phospholipid membrane on cartilage surfaces. Reverse micelles stabilize ions maintaining equilibrium, their surface charges contribute to the stability of particles, while providing additional screening for electrostatic processes.  相似文献   

11.
Amphiphilic signal sequences with the potential to form alpha-helices with a polar, charged face and an apolar face are common in proteins which are imported into mitochondria, in the PTS permeases of bacteria, and in bacterial rhodopsins. Synthetic peptides of such sequences partition into the surface region of lipid membranes where they can adopt different secondary structures. A finely controlled balance of electrostatic and hydrophobic interactions determines the 'affinity' of amphiphilic signal peptides for lipid membranes, as well as the structure, orientation and depth of penetration of these peptides in lipid bilayer membranes. The ability of an individual peptide to associate with lipid bilayer membranes in several different modes is, most likely, a general feature of amphiphilic signal peptides and is reflected in several common physical properties of their amino acid sequences.  相似文献   

12.
Stahelin RV  Cho W 《Biochemistry》2001,40(15):4672-4678
The roles of cationic, aliphatic, and aromatic residues in the membrane association and dissociation of five phospholipases A(2) (PLA(2)), including Asp-49 PLA(2) from the venom of Agkistrodon piscivorus piscivorus, acidic PLA(2) from the venom of Naja naja atra, human group IIa and V PLA(2)s, and the C2 domain of cytosolic PLA(2), were determined by surface plasmon resonance analysis. Cationic interfacial binding residues of A. p. piscivorus PLA(2) (Lys-10) and human group IIa PLA(2) (Arg-7, Lys-10, and Lys-16), which mediate electrostatic interactions with anionic membranes, primarily accelerate the membrane association. In contrast, an aliphatic side chain of the C2 domain of cytosolic PLA(2) (Val-97), which penetrates into the hydrophobic core of the membrane and forms hydrophobic interactions, mainly slows the dissociation of membrane-bound protein. Aromatic residues of human group V PLA(2) (Trp-31) and N. n. atra PLA(2) (Trp-61, Phe-64, and Tyr-110) contribute to both membrane association and dissociation steps, and the relative contribution to these processes depends on the chemical nature and the orientation of the side chains as well as their location on the interfacial binding surface. On the basis of these results, a general model is proposed for the interfacial binding of peripheral proteins, in which electrostatic interactions by ionic and aromatic residues initially bring the protein to the membrane surface and the subsequent membrane penetration and hydrophobic interactions by aliphatic and aromatic residues stabilize the membrane-protein complexes, thereby elongating the membrane residence time of protein.  相似文献   

13.
Molecular recognition plays a key role in life. Macromolecular interactions at and with interfaces are of paramount importance in this respect. It is therefore crucial to understand and quantify the forces near the surfaces of biological interest in sufficient detail. Specific binding of large molecules, such as antibodies, is affected by the proximity of polar surfaces, for example. On the one hand, the presence of the net surface charges may raise or lower the local macromolecular concentration depending on the relative sign of the charges involved. On the other hand, the ligands attached to strongly polar surfaces always attract and bind their corresponding antibodies less efficiently than the corresponding dissolved molecules. The reason for this is the non-Coulombic repulsion between the ligand-presenting polar surface and the approaching macromolecule. This force is promoted by the surface hydrophilicity and the width of the interfacial region. A simple, direct hydration force is seldom, if ever, seen in such systems. (This is owing to the very short range (Lambda (h ) reverse similar 0.1 nm ) of pure hydration force.) The non-specific adsorption of proteins to the lipid bilayer is also little affected by the overall repulsion between the macromolecule and the bilayer surface; such an adsorption is governed more by the number of defects and/or by the availability of the hydrophobic binding sites in the interfacial region. Artificial lipid membranes typically offer numerous such binding sites to the surrounding macromolecules. Multiple non-specific protein adsorption, which results in partial macromolecular denaturation or complement activation, is therefore one of the main reasons for the rapid elimination of lipid vesicles from the blood stream in vivo. To promote the circulation time of an intravenously injected lipid suspension it is therefore necessary to modify the surfaces of their constituent lipid bilayers. Increasing the surface net charge density and/or increasing the bilayer surface hydrophilicity is of little use in this respect. In order to affect the non-specific bilayer-protein interactions significantly, an optimal number of water-soluble, short and sufficiently mobile polymers must be attached to the lipid head-groups. These polymers then increase the repulsive barrier of the membrane surface dramatically, due to the generation of a thick and mobile as well as strongly hydrated interface. Owing to this, the affinity for proteins of the resulting surface is lowered and the surface-induced protein denaturation or complement insertion is hampered. Polymer-coated liposomes, consequently, are not attractive for the phagocytic cells. Such liposomes, consequently, remain in the blood circulation much longer than simple lipid vesicles; the former, consequently, may spontaneously accumulate in tumors.  相似文献   

14.
Hexamethylene bisacetamide (HMBA) and other polar/apolar chemical agents are potent inducers of erythroid differentiation in murine erythroleukemia cells (MELC), as well as other transformed cell lines. Although the mechanism of action of HMBA is not yet known, evidence has been obtained that protein kinase C (PKC) plays a role in this process. In this study we provide further evidence that establishes this relationship. MELC contain two principal PKC activities, PKC beta and PKC alpha. MELC variants, selected for resistance to vincristine (VC), which display acceleration of their rates of induced differentiation, are enriched in PKC beta activity. When MELC are exposed to HMBA there is a fall in PKC activity, largely accounted for by a decline in PKC beta. This decline in PKC activity is faster in the VC-resistant, rapidly differentiating MELC. We previously demonstrated that VC-resistant MELC are resistant to the inhibition of differentiation by the phorbol ester, phorbol 12-myristate 13-acetate (PMA). In both VC-sensitive and -resistant MELC, PMA causes rapid membrane translocation and then a decline in PKC activity, accompanied by a generation of a Ca2+- and phospholipid-independent protein kinase activity. In VC/PMA-resistant variants, this Ca2+/phospholipid-independent protein kinase activity persists considerably longer than in the VC-sensitive variants. This correlates with the resistance to PMA and provides additional evidence for a role for the Ca2+/phospholipid-independent protein kinase activity during induced differentiation.  相似文献   

15.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

16.
Particulate drug formulations are considered to be a means that may improve the pharmacokinetics and biodistribution of active compounds. By using them, drug distribution is determined solely by the properties of the carrier. The surface properties of such supramolecular aggregates determine how they will interact with various biological structures. Among others, surface electrostatic charge and surface grafted polymers are considered to be among the major factors affecting its interaction with proteins and cells. In this article, we present experimental evidence that properly selected surface electrostatic charge and grafted polymers can alter the association of liposomes with colon cancer cells. The dependence of the adsorption of liposomes onto the cell surface on the quantity and length of surface grafted polymers for a certain surface charge density exhibits a distinct maximum. For example, when liposomes were formed with 20 mol% of DOTAP, PE-PEG350 increased liposome adsorption by up to 6 mol%. This adsorption maximum depends on both polymer length and charge type. Results presented in this article show that the interaction of liposomes with colon cancer cells can be tuned by a proper combination of liposome surface electrostatics and surface grafted polymers.  相似文献   

17.
Particulate drug formulations are considered to be a means that may improve the pharmacokinetics and biodistribution of active compounds. By using them, drug distribution is determined solely by the properties of the carrier. The surface properties of such supramolecular aggregates determine how they will interact with various biological structures. Among others, surface electrostatic charge and surface grafted polymers are considered to be among the major factors affecting its interaction with proteins and cells. In this article, we present experimental evidence that properly selected surface electrostatic charge and grafted polymers can alter the association of liposomes with colon cancer cells. The dependence of the adsorption of liposomes onto the cell surface on the quantity and length of surface grafted polymers for a certain surface charge density exhibits a distinct maximum. For example, when liposomes were formed with 20 mol% of DOTAP, PE-PEG350 increased liposome adsorption by up to 6 mol%. This adsorption maximum depends on both polymer length and charge type. Results presented in this article show that the interaction of liposomes with colon cancer cells can be tuned by a proper combination of liposome surface electrostatics and surface grafted polymers.  相似文献   

18.
The islet amyloid polypeptide (IAPP) and insulin are coproduced by the β-cells of the pancreatic islets of Langerhans. Both peptides can interact with negatively charged lipid membranes. The positively charged islet amyloid polypeptide partially inserts into these membranes and subsequently forms amyloid fibrils. The amyloid fibril formation of insulin is also accelerated by the presence of negatively charged lipids, although insulin has a negative net charge at neutral pH-values. We used water-polymer model interfaces to differentiate between the hydrophobic and electrostatic interactions that can drive these peptides to adsorb at an interface. By applying neutron reflectometry, the scattering-length density profiles of IAPP and insulin, as adsorbed at three different water-polymer interfaces, were determined. The islet amyloid polypeptide most strongly adsorbed at a hydrophobic poly-(styrene) surface, whereas at a hydrophilic, negatively charged poly-(styrene sulfonate) interface, the degree of adsorption was reduced by 50%. Almost no IAPP adsorption was evident at this negatively charged interface when we added 100 mM NaCl. On the other hand, negatively charged insulin was most strongly attracted to a hydrophilic, negatively charged interface. Our results suggest that IAPP is strongly attracted to a hydrophobic surface, whereas the few positive charges of IAPP cannot warrant a permanent immobilization of IAPP at a hydrophilic, negatively charged surface at an ionic strength of 100 mM. Furthermore, the interfacial accumulation of insulin at a hydrophilic, negatively charged surface may represent a favorable precondition for nucleus formation and fibril formation.  相似文献   

19.
Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ~5 nm, when the area per molecule in the surface region is <1.4 nm2. Further, interfacial tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state.  相似文献   

20.
The influence of glutaryl phosphatidylcholine on the molecular organization of phosphatidylcholine liposomes was studied by spin-labeling technique. The ESR signals given by the 5-nitroxide stearic acid label showed that the presence of glutaryl lecithin (i) significantly increased the negative charge density of the polar liposome surface with increasing proton concentration depending on the bulk solution pH, and (ii) apparently decreased the packing (order) of the hydrophobic region close to the surface, essentially in the presence of saturated phospholipids. The spectral information--S (order parameter) and alpha N (isotropic nitrogen coupling constant)--resulted in the location of the probe near or in the polar zone of the membrane or in the hydrophobic region, depending on the protonation/deprotonation of the fatty acid carboxyl group of the probe. The microviscosity of the inner region of the membrane monitored by the 12- and 16-probes was not significantly altered by glutaryl lecithin. On the other hand, glutaryl lecithin has a lesser effect on liposomes containing anionic polar head groups, such as dipalmitoyl phosphatidylglycerol or phosphatidylinositol, the anionic charge of which already had the same effect on protonation of the polar surface. The temperature dependence of dipalmitoyl phosphatidylcholine liposome dynamic behavior indicates that the glutaryl lecithin effect is completely different above and below the gel-to-liquid crystalline phase transition point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号