首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 915 毫秒
1.
Extending the collection of garlic (Allium sativum L.) accessions is an important means that is available for broadening the genetic variability of this cultivated plant, with regard to yield, quality, and tolerance to biotic and abiotic traits; it is also an important means for restoring fertility and flowering. In the framework of the EU project Garlic and Health, 120 garlic accessions were collected in Central Asia – the main centre of garlic diversity. Plants were documented and thereafter maintained in field collections in both Israel and The Netherlands. The collection was evaluated for biological and economic traits. Garlic clones vary in most vegetative characteristics (leaf number, bulb size and structure), as well as in floral scape elongation and inflorescence development. A clear distinction was made between incomplete bolting and bolting populations; most of the accessions in the latter populations produced flowers with fertile pollen and receptive stigma. Wide variations were recorded with regard to differentiation of topsets, their size, number and rapidity of development. Furthermore, significant variation in organo-sulphur compounds (alliin, isoalliin, allicin and related dipeptides) was found within garlic collections and between plants grown under differing environmental conditions. Genetic fingerprinting by means of AFLP markers revealed three distinct groups within this collection, differing also in flowering ability and organo-S content.  相似文献   

2.
Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscopy.  相似文献   

3.
The Arabidopsis floral homeotic gene AGAMOUS (AG) is a regulator of early flower development. The ag mutant phenotypes suggest that AG has two functions in flower development: (1) specifying the identity of stamens and carpels, and (2) controlling floral meristem determinacy. To dissect these two AG functions, we have generated transgenic Arabidopsis plants carrying an antisense AG construct. We found that all of the transgenic plants produced abnormal flowers, which can be classified into three types. Type I transgenic flowers are phenocopies of the ag-1 mutant flowers, with both floral meristem indeterminacy and floral organ conversion; type II flowers are indeterminate and have partial conversion of the reproductive organs; and type III flowers have normal stamens and carpels, but still have an indeterminate floral meristem inside the fourth whorl of fused carpels. The existence of type III flowers indicates that AG function can be perturbed to affect only floral meristem determinacy, but not floral organ identity. Furthermore, the fact that floral meristem determinacy is affected in all transformants, but floral organ identity only in a subset of them, suggests that the former may required a higher level of AG activity than the latter. This hypothesis is supported by the levels of AG'mRNA detected in different transformants with different frequencies of distinct types of abnormal antisense AG transgenic flowers. Finally, since AG inhibits the expression of another floral regulatory gene AP1, we examined AP1 expression in antisense AG flowers, and found that AP1 is expressed at a relatively high level in the center of type II flowers, but very little or below detectable levels in the inner whorls of type III flowers. These results provide further insights into the interaction of AG and AP1 and how such an interaction may control both organ identity and floral meristem determinacy.  相似文献   

4.
The reproductive biology of Hydrobryopsis sessilis (Podostemaceae, subfamily Podostemoideae), a reduced, threatened, aquatic angiosperm endemic to the Western Ghats of India, was examined. This is the first report on the transition from the vegetative to the reproductive phase in this plant, describing floral ontogeny, pollination and the breeding system. The cytohistological zonation of the apical meristem of the reproductive thallus is identical to that of the apical meristem of the vegetative thallus. The floral shoots do not replace vegetative shoots (i.e. the vegetative shoots never bear flowers), but form at new sites at the tip of the flattened plant body. Each floral shoot meristem is tiny, deep‐seated and concave and arises endogenously following lysigeny. The floral shoot meristem gives rise to four to six bracts in a distichous manner. The development of spathe, stamens and carpels is described. The ab initio dorsiventrality of the carpels and the occurrence of endothelium in the ovules are reported. The mature stigmas and anthers lie close to each other. The pollen germinates within undehisced anthers and the pollen tubes enter the stigmas in the unopened floral bud, leading to pre‐anthesis, complete, constitutional cleistogamy under water. The seed set is 63.2%. A significant finding is the penetration of several pollen tubes into the filaments of stamens in 16% of the flower buds, indicating a trend towards cryptic self‐fertilization. The Indian Podostemoideae appear to show a shift from xenogamy or geitonogamy or autogamy in a chasmogamous flower to complete autogamy in a cleistogamous flower. The floral modifications leading to cleistogamy in H. sessilis have been identified. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 222–236.  相似文献   

5.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

6.
This study of floral development in Drimys lanceolata in Section Tasmannia provides a basis for comparison with D. winteri, a member of the section Wintera, which has been described previously. The carpellate flowers of D. lanceolata have 2 sepals, 4–6 petals, and a solitary carpel, which form in acropetal succession. In symmetry the flower and its apical meristem are bilateral rather than radial, as in the flower of Drimys winteri. The floral apex of D. lanceolata is zonate while that of D. winteri is organized as a mantle and core. Preceding carpel initiation the floral apex of D. lanceolata is narrowly wedge-shaped, while that of D. winteri is low-convex. The entire apex is utilized in carpel initiation in D. lanceolata, involving many subsurface cell divisions over the entire summit. No apical residuum remains, and the carpel is terminal. In this feature the contrast with D. winteri is particularly marked, since in the latter, carpels are initiated laterally around the floral apex, which c an be recognized as an apical residuum after all appendages have formed.  相似文献   

7.
Mutations associated with floral organ number in rice   总被引:14,自引:0,他引:14  
How floral organ number is specified is an interesting subject and has been intensively studied in Arabidopsis thaliana. In rice (Oryza sativa L.), mutations associated with floral organ number have been identified. In three mutants of rice, floral organ number 1 (fon1) and the two alleles, floral organ number 2-1 (fon2-1) and floral organ number 2-2 (fon2-2), the floral organs were increased in number centripetally. Lodicules, homologous to petals, were rarely affected, and stamens were frequently increased from six to seven or eight. Of all the floral organs the number of pistils was the most frequently increased. Among the mutants, fon1 showed a different spectrum of organ number from fon2 -1 and fon2 -2. Lodicules were the most frequently affected in fon1, but pistils of more than half of fon1 flowers were unaffected; in contrast, the pistils of most flowers were increased in fon2 -1 and fon2-2. Homeotic conversion of organ identity was also detected at a low frequency in ectopically formed lodicules and stamens. Lodicules and stamens were partially converted into anthers and stigmas, respectively. Concomitant with the increased number of floral organs, each mutant had an enlarged apical meristem. Although meristem size was comparable among the three mutants and wild type in the early phase of flower development, a significant difference became apparent after the lemma primordium had differentiated. In these mutants, the size of the shoot apical meristem in the embryo and in the vegetative phase was not affected, and no phenotypic abnormalities were detected. These results do not coincide with those for Arabidopsis in which clavatal affects the sizes of both shoot and floral meristems, leading to abnormal phyllotaxis, inflorescence fasciation and increased floral organs. Accordingly, it is considered that FON1 and FON2 function exclusively in the regulation of the floral meristem, not of the vegetative meristem.Abbreviation DIC differential interference contrast This work was supported in part by Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.  相似文献   

8.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

9.
10.
11.
12.
13.
Bai SL  Peng YB  Cui JX  Gu HT  Xu LY  Li YQ  Xu ZH  Bai SN 《Planta》2004,220(2):230-240
To understand the regulatory mechanisms governing unisexual flower development in cucumber, we conducted a systematic morphogenetic analysis of male and female flower development, examined the dynamic changes in expression of the C-class floral organ identity gene CUM1, and assessed the extent of DNA damage in inappropriate carpels of male flowers. Accordingly, based on the occurrence of distinct morphological events, we divided the floral development into 12 stages ranging from floral meristem initiation to anthesis. As a result of our investigation we found that the arrest of stamen development in female flowers, which occurs just after the differentiation between the anther and filament, is mainly restricted to the primordial anther, and that it is coincident with down-regulation of CUM1 gene expression. In contrast, the arrest of carpel development in the male flowers occurs prior to the differentiation between the stigma and ovary, given that no indication of ovary differentiation was observed even though CUM1 gene expression remained detectable throughout the development of the stigma-like structures. Although the male and female reproductive organs have distinctive characteristics in terms of organ differentiation, there are two common features regarding organ arrest. The first is that the arrest of the inappropriate organ does not affect the entirety of the organ uniformly but occurs only in portions of the organs. The second feature is that all the arrested portions in both reproductive organs are spore-bearing parts.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy - TUNEL TdT-mediated dUTP nick-end labeling  相似文献   

14.
 MADS box genes are likely involved in many different steps of plant development, since their RNAs accumulate in a wide variety of tissues, including roots, stems, leaves, flowers and embryos. In flowers, MADS box genes regulate the early step of specifying floral meristem identity as well as the later step of determining the fate of floral organ primordia. Here we describe the isolation and characterization of a new MADS box gene from Arabidopsis, AGL9. Sequence analyses indicate that AGL9 represents the putative ortholog of the FBP2 and TM5 genes from petunia and tomato, respectively. In situ hybridization analyses show that AGL9 RNA begins to accumulate after the onset of expression of the floral meristem identity genes, but before the activation of the organ identity genes. These data indicate that AGL9 functions early in flower development to mediate between the interaction of these two classes of genes. Later in flower development, AGL9 RNA accumulates in petals, stamens, and carpels, suggesting a role for AGL9 in controlling the development of these organs. Received: 4 May 1997 / Accepted: 14 July 1997  相似文献   

15.
Floral ontogeny is described and compared in five species and four genera of the hypothetically basal proteaceous subfamily Persoonioideae sensu Johnson and Briggs. The hypotheses surrounding the origin of the peculiar proteaceous flower and homologous structures within the flowers are examined using ontogenetic morphological techniques. Ontogenetic evidence reveals that the proteaceous flower is simple, composed of four tepals, each tepal initiated successively with the lateral tepals being initiated first and second followed by the successive initiation of the sagittal tepals. Each of four stamens is initiated opposite a tepal in a similar sequence to tepal initiation. A single carpel develops terminally from the remaining floral meristem. In taxa of Persoonieae, nectaries are initiated from a broadened receptacle in alternistamenous sites after zonal growth beneath and between the tepals and stamens has begun. The nectaries are interpreted as secondary organs, not reduced homologues of a “lost” petal or stamen series. Developmental variation is present among the examined taxa in several forms including the development of a Vorlaüferspitze (spine) on the upper portion of the tepals, adnation between the anthers and tepals, and formation of the carpel. In Placospermum the early formation of the carpel cleft extends to the floral receptacle and in the other taxa, the carpel cleft is distinctly above the receptacle. Different developmental pathways result in similar mature morphologies of the carpel in Persoonia falcata and Placospermum coriaceum. Bellendena montana is unique relative to the other taxa in having free stamens, a punctate stigma, reduced (not lost) floral bracts, and the floral and bract primordia are initiated from a common meristem. This study provides a foundation for future studies of the developmental basis of floral diversity within Proteaceae.  相似文献   

16.
Specification of chimeric flowering shoots in wild-type Arabidopsis   总被引:4,自引:1,他引:3  
Within wild-type Arabidopsis populations, a subset of the plants were found to have a single chimeric shoot on their primary shoot axes. The chimeric shoots were located below the lowest primary-axis flower; and they exhibited features of both flowers and paraclades (lateral flowering shoots). Morphological analyses of chimeric shoots indicated that they developed from single primordia. In each chimeric shoot, the side furthest from the apical meristem was specified as 'flower'—while the side closest to the meristem was specified as 'paraclade'—suggesting that a stimulus from outside the apical meristem can directly induce primordia to develop as flowers. It is concluded that the development of the teratological chimeric shoots resulted from the overlap of the vegetative and floral specification processes within single primordia.  相似文献   

17.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

18.
Plants of Pinguicula vulgaris L. have either clockwise or counterclockwise spiral phyllotaxy. The inception of floral primordia occurs in leaf sites as a normal sequence of development. Only two leaf primordia initiated late in the season develop into floral primordia in the following year. They do not represent a direct modification of the apical meristem nor of the detached meristem. The apical meristem continues to produce leaves in the vegetative phase and flowers in the reproductive phase, and thus the plants show a monopodial growth. Axillary buds are not developed in this perennial species and instead additional buds of adventitious ontogeny appear. Such buds are produced on the older leaves of larger plants, and they are extremely useful in the vegetative propagation of the species.  相似文献   

19.
Paul B. Green 《Planta》1988,175(2):153-169
Floral development is generally viewed as involving interactions between recently made organs and generative activity on the apical dome; one set of floral organs is thought to induce the next. To investigate such interactions, flowering in Echeveria derenbergii (J. Purpus) was studied at two levels of structure. At the larger, morphological, level the inflorescence apex is shown to have simple cyclic development. Seen from above, it elongates horizontally, then forms a transverse cleft to demarcate a flower primordium in one of two rows. The meristem then elongates at 90° to its previous axis, also horizontally, and demarcates a flower in the other row. Activity on the apical surface correlates well with the nature and activity of adjacent sub-apical organs. For example, the 90° shifts in elongation of the meristem correlate with that tissue's being attached, laterally, to successive large growing bracts whose bases lie at 90°. Also, on the flower primordium, the five sepals arise in a spiral sequence which correlates with one of increasing age, since formation by the cleft, of the edges of the primordium.The second level of study was to test whether the developmental correlations could have a biophysical explanation. By biophysical theory, organs arise where the dome surface is structurally predisposed to bulge. This is a function of the cellulose reinforcement pattern in the surface. Successive patterns of cellulose reinforcement in isolated surface layers from floral organs were determined using polarized light. This was done for the cyclic activity of the inflorescence meristem and the development of the flower. The results indicate that patterns of cellulose reinforcement on the apical dome surface could lead to the production of organs, through local promotion of bulging of the tunica. Subsequent growth of the base of each organ stretches the adjacent dome tissue in a directional fashion. Cytoskeletal responses of these stretched cells lead to new cellulose alignments on the dome which generate the reinforcement pattern for the next round of organs.Abbreviations F floral meristem tissue which will directly produce a flower, starting with sepals - I inflorescence meristem tissue, generally oval in top view and bounded by two bracts, that produces both floral tissue (F) and additional I meristem tissue - I-max the maximal size of I tissue before it bifurcates into F tissue and I tissue (I-min) - I-min the minimal size of I tissue just after it has bifurcated to produce F tissue and I tissue  相似文献   

20.
The ontogeny of the flower and fruit of Illicium floridanum Ellis, the Star Anise, was investigated. Each of 5 or 6 bracts in each mixed terminal bud subtends either a vegetative or floral bud. The solitary flowers occur in terminal or axillary positions. Each flower has 3–6 subtending bracteoles arranged in a clockwise helix. The flowers in our material have 24–28 tepals, 30–39 stamens, and usually 13 (rarely 19) uniovulate carpels. Tepals and stamens are initiated in a low-pitched helix; carpels later appear whorled, but arise successively at different levels on the apical flanks. The floral apex is high-convex in outline with a tunica-corpus configuration; it increases in height and width throughout initiation of the floral appendages. Tepals, stamens, and carpels are initiated by one to several periclinal divisions in the subsurface layers low on the apical flanks, augmented by cell divisions in the outer layers of the corpus. The carpel develops as a conduplicate structure with appressed, connivent margins. Procambium development of floral appendages is acropetal and continuous. Bracteoles, tepals, stamens and carpels are each supplied by 1 trace; the carpellary trace splits into a dorsal and an ascending ventral sympodium. The latter bifurcates to form 2 ventral bundles. The ovular bundle diverges from the ventral sympodium. Ovule initiation occurs in a median axillary position to the carpel, an unusual type of ovule initiation. The fruit vasculature is greatly amplified as the receptacle and follicles enlarge. After carpel initiation an apical residuum persists which is not vascularized; a plate meristem develops over its surface to produce a papillate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号