首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huh YH  Jeon SH  Yoo JA  Park SY  Yoo SH 《Biochemistry》2005,44(16):6122-6132
We show here that expression of chromogranins in non-neuroendocrine NIH3T3 cells significantly increased the amount of IP(3)-mediated intracellular Ca(2+) mobilization in these cells, whereas suppression of them in neuroendocrine PC12 cells decreased the amount of mobilized Ca(2+). We have therefore investigated the relationship between the IP(3)-induced intracellular Ca(2+) mobilization and secretory granules. The level of IP(3)-mediated Ca(2+) release in CGA-expressing NIH3T3 cells was 40% higher than in the control cells, while that of CGB-expressing cells was 134% higher, reflecting the number of secretory granules formed. Suppression of CGA and CGB expression in PC12 cells resulted in 41 and 78% reductions in the number of secretory granules, respectively, while the extents of IP(3)-induced Ca(2+) release in these cells were reduced 40 and 69%, respectively. The newly formed secretory granules of NIH3T3 cells contained all three isoforms of the IP(3)Rs. Comparison of the concentrations of the IP(3)R isoforms expressed in the ER and nucleus of chromogranin-expressing and nonexpressing NIH3T3 cells did not show significant differences, indicating that chromogranin expression did not affect the expression of endogenous IP(3)Rs. Nonetheless, the IP(3)R concentrations in secretory granules of chromogranin-expressing NIH3T3 cells were 3.5-4.7-fold higher than those of the ER, similar to the levels found in secretory granules of neuroendocrine chromaffin cells, thus suggesting that the IP(3)Rs targeted to the newly formed secretory granules are newly induced by chromogranins without affecting the expression of intrinsic IP(3)Rs. These results strongly suggest that the extent of IP(3)-induced intracellular Ca(2+) mobilization in secretory cells is closely related to the number of secretory granules.  相似文献   

2.
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for multiple processes within the eukaryotic cell, including membrane transport and neurotransmitter secretion. How the V-ATPase is regulated, e.g. by an accessory subunit, remains elusive. Here we explored the role of the neuroendocrine V-ATPase accessory subunit Ac45 via its transgenic expression specifically in the Xenopus intermediate pituitary melanotrope cell model. The Ac45-transgene product did not affect the levels of the prohormone proopiomelanocortin nor of V-ATPase subunits, but rather caused an accumulation of the V-ATPase at the plasma membrane. Furthermore, a higher abundance of secretory granules, protrusions of the plasma membrane and an increased Ca(2+)-dependent secretion efficiency were observed in the Ac45-transgenic cells. We conclude that in neuroendocrine cells Ac45 guides the V-ATPase through the secretory pathway, thereby regulating the V-ATPase-mediated process of Ca(2+)-dependent peptide secretion.  相似文献   

3.
The secretory granules of neuroendocrine cells, which contain large amounts of Ca(2+) and chromogranins, have been demonstrated to release Ca(2+) in response to inositol 1,4,5-trisphosphate (IP(3)), indicating the IP(3)-sensitive intracellular Ca(2+) store role of secretory granules. In our previous study, chromogranin A (CGA) was shown to interact with several secretory granule membrane proteins, including the IP(3) receptor (IP(3)R), at the intravesicular pH 5.5 (Yoo, S. H. (1994) J. Biol. Chem. 269, 12001-12006). To examine the functional aspect of this coupling, we measured the IP(3)-mediated Ca(2+) release property of the IP(3)R reconstituted into liposomes in the presence and absence of CGA. Presence of CGA in the IP(3)R-reconstituted liposome significantly enhanced the IP(3)-mediated Ca(2+) release from the liposomes. Moreover, the number of IP(3) bound to the reconstituted IP(3)R increased. The fluorescence energy transfer and IP(3)R Trp fluorescence quenching studies indicated that the structure of reconstituted IP(3)R becomes more ordered and exposed in the presence of CGA, suggesting that the coupled CGA in the liposome caused structural changes of the IP(3)R, changing it to a structure that is better suited to IP(3) binding and subsequent Ca(2+) release. These results appear to underscore the physiological significance of IP(3)R-CGA coupling in the secretory granules.  相似文献   

4.
Alvarez J 《Cell calcium》2012,51(3-4):331-337
Cellular Ca(2+)signaling results from a complex interplay among a variety of Ca(2+) fluxes going across the plasma membrane and across the membranes of several organelles, together with the buffering effect of large numbers of Ca(2+)-binding sites distributed along the cell architecture. Endoplasmic and sarcoplasmic reticulum, mitochondria and even nucleus have all been involved in cellular Ca(2+) signaling, and the mechanisms for Ca(2+) uptake and release from these organelles are well known. In neuroendocrine cells, the secretory granules also constitute a very important Ca(2+)-storing organelle, and the possible role of the stored Ca(2+) as a trigger for secretion has attracted considerable attention. However, this possibility is frequently overlooked, and the main reason for that is that there is still considerable uncertainty on the main questions related with granular Ca(2+) dynamics, e.g., the free granular [Ca(2+)], the physical state of the stored Ca(2+) or the mechanisms for Ca(2+) accumulation and release from the granules. This review will give a critical overview of the present state of knowledge and the main conflicting points on secretory granule Ca(2+) homeostasis in neuroendocrine cells.  相似文献   

5.
Exposure of chromaffin cells to digitonin causes the loss of many cytosolic proteins. Here we report that scinderin (a Ca(2+)-dependent actin-filament-severing protein), but not gelsolin, is among the proteins that leak out from digitonin-permeabilized cells. Chromaffin cells that were exposed to increasing concentrations (15-40 microM) of digitonin for 5 min released scinderin into the medium. One-minute treatment with 20 microM digitonin was enough to detect scinderin in the medium, and scinderin leakage levelled off after 10 min of permeabilization. Elevation of free Ca2+ concentration in the permeabilizing medium produced a dose-dependent retention of scinderin. Results were confirmed by immunofluorescence microscopy of digitonin-permeabilized cells. Subcellular fractionation of permeabilized cells showed that scinderin leakage was mainly from the cytoplasm (80%); the remaining scinderin (20%) was from the microsomal fraction. Other Ca(2+)-binding proteins released by digitonin and also retained by Ca2+ were calmodulin, protein kinase C, and calcineurins A and B. Scinderin leakage was parallel to the loss of the chromaffin cell secretory response. Permeabilization in the presence of increasing free Ca2+ concentrations produced a concomitant enhancement in the subsequent Ca(2+)-dependent catecholamine release. The experiments suggest that: (1) scinderin is an intracellular target for Ca2+, (2) permeabilization of chromaffin cells with digitonin in the presence of micromolar Ca2+ concentrations retained Ca(2+)-binding proteins including scinderin, and (3) the retention of these proteins may be related to the increase in the subsequent Ca(2+)-dependent catecholamine release observed in permeabilized chromaffin cells.  相似文献   

6.
The role of dense core secretory vesicles in the control of cytosolic-free Ca(2+) concentrations ([Ca(2+)](c)) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2-synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet beta-cells: (a) increases in [Ca(2+)](c) cause a prompt increase in intravesicular-free Ca(2+) concentration ([Ca(2+)]SV), which is mediated by a P-type Ca(2+)-ATPase distinct from the sarco(endo) plasmic reticulum Ca(2+)-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca(2+) pumps; (b) steady state Ca(2+) concentrations are 3-5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca(2+); (c) inositol (1,4,5) trisphosphate has no impact on [Ca(2+)](SV) in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca(2+)](SV). Thus, secretory vesicles represent a dynamic Ca(2+) store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca(2+)-induced Ca(2+) release from vesicles docked at the plasma membrane could participate in triggering exocytosis.  相似文献   

7.
Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion   总被引:1,自引:0,他引:1  
Munc13-4 is a widely expressed member of the CAPS/Munc13 protein family proposed to function in priming secretory granules for exocytosis. Munc13-4 contains N- and C-terminal C2 domains (C2A and C2B) predicted to bind Ca(2+), but Ca(2+)-dependent regulation of Munc13-4 activity has not been described. The C2 domains bracket a predicted SNARE-binding domain, but whether Munc13-4 interacts with SNARE proteins is unknown. We report that Munc13-4 bound Ca(2+) and restored Ca(2+)-dependent granule exocytosis to permeable cells (platelets, mast, and neuroendocrine cells) dependent on putative Ca(2+)-binding residues in C2A and C2B. Munc13-4 exhibited Ca(2+)-stimulated SNARE interactions dependent on C2A and Ca(2+)-dependent membrane binding dependent on C2B. In an apparent coupling of membrane and SNARE binding, Munc13-4 stimulated SNARE-dependent liposome fusion dependent on putative Ca(2+)-binding residues in both C2A and C2B domains. Munc13-4 is the first priming factor shown to promote Ca(2+)-dependent SNARE complex formation and SNARE-mediated liposome fusion. These properties of Munc13-4 suggest its function as a Ca(2+) sensor at rate-limiting priming steps in granule exocytosis.  相似文献   

8.
Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca(2+)-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48-111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214-373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.  相似文献   

9.
Secretory granules of neuroendocrine cells are inositol 1,4,5-trisphosphate (InsP(3))-sensitive Ca(2+) stores in which the Ca(2+) storage protein, chromogranin A (CGA), couples with InsP(3)-gated Ca(2+) channels (InsP(3)R) located in the granule membrane. The functional aspect of this coupling has been investigated via release studies and planar lipid bilayer experiments in the presence and absence of CGA. CGA drastically increased the release activity of the InsP(3)R by increasing the channel open probability by 9-fold and the mean open time by 12-fold. Our results show that CGA-coupled InsP(3)Rs are more sensitive to activation than uncoupled receptors. This modulation of InsP(3)R channel activity by CGA appears to be an essential component in the control of intracellular Ca(2+) concentration by secretory granules and may regulate the rate of vesicle fusion and exocytosis.  相似文献   

10.
Phogrin, a 60/64-kDa integral membrane protein of dense-core granules in neuroendocrine cells, is phosphorylated in a Ca(2+)-sensitive manner in response to secretagogue stimulation of pancreatic beta-cells. Phosphorylation of the phogrin cytosolic domain by beta-cell homogenates was Ca(2+)-independent but stimulated by cAMP. Recombinant protein kinase A (PKA) could phosphorylate phogrin directly. High performance liquid chromatography analysis of tryptic phosphopeptides, combined with site-directed mutagenesis of candidate sites, revealed the presence of two phosphorylation sites at Ser-680 and Thr-699, located in the juxtamembrane region between the transmembrane span and the protein-tyrosine phosphatase homology domain of phogrin. Full-length wild-type phogrin, as well as mutant versions where Ser-680 and Thr-699 had been replaced either by alanines or by aspartic acid residues, were targeted to secretory granules in transfected AtT20 neuroendocrine cells. Stimulation of these cells with a range of secretagogues, including K(+), BaCl(2), and forskolin, demonstrated that the in vivo phosphorylation sites are the same as those identified in vitro. In MIN6 beta-cells, the PKA inhibitor H-89 prevented Ca(2+)-dependent phogrin phosphorylation in response to glucose, suggesting that Ca(2+) exerts its effect on phogrin phosphorylation through regulating the activity of PKA.  相似文献   

11.
Understanding precisely the functioning of voltage-gated Ca2+ channels and their modulation by signaling molecules will help clarifying the Ca(2+)-dependent mechanisms controlling exocytosis in chromaffin cells. In recent years, we have learned more about the various pathways through which Ca2+ channels can be up- or down-modulated by hormones and neurotransmitters and how these changes may condition chromaffin cell activity and catecolamine release. Recently, the attention has been focused on the modulation of L-channels (CaV 1), which represent the major Ca2+ current component in rat and human chromaffin cells. L-channels are effectively inhibited by the released content of secretory granules or by applying mixtures of exogenous ATP, opioids, and adrenaline through the activation of receptor-coupled G proteins. This unusual inhibition persists in a wide range of potentials and results from a direct (membrane-delimited) interaction of G protein subunits with the L-channels co-localized in membrane microareas. Inhibition of L-channels can be reversed when the cAMP/PKA pathway is activated by membrane permeable cAMP analog or when cells are exposed to isoprenaline (remote action), suggesting the existence of parallel and opposite effects on L-channel gating by distinctly activated membrane autoreceptors. Here, the authors review the molecular components underlying these two opposing signaling pathways and present new evidence supporting the presence of two L-channel types in rat chromaffin cells (alpha1C and alpha1D), which open new interesting issues concerning Ca(2+)-channel modulation. In light of recent findings on the regulation of exocytosis by Ca(2+)-channel modulation, the authors explore the possible role of L-channels in the autocontrol of catecholamine release.  相似文献   

12.
J H Walent  B W Porter  T F Martin 《Cell》1992,70(5):765-775
The regulated secretory pathway is activated by elevated cytoplasmic Ca2+; however, the components mediating Ca2+ regulation have not been identified. In semi-intact neuroendocrine cells, Ca(2+)-activated secretion is ATP- and cytosol protein-dependent. We have identified a novel brain protein, p145, as a cytosolic factor that reconstitutes Ca(2+)-activated secretion in two neuroendocrine cell types. The protein is a dimer of 145 kd subunits, exhibits Ca(2+)-dependent interaction with a hydrophobic matrix, and binds phospholipid vesicles, suggesting a membrane-associated function. A p145-specific antibody inhibits the reconstitution of Ca(2+)-activated secretion by cytosol, indicating an essential role for p145. The restricted expression of p145 in tissues exhibiting a regulated secretory pathway suggests a key role for this protein in the transduction of Ca2+ signals into vectorial membrane fusion events.  相似文献   

13.
The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic beta-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca(2+)-dependent exocytosis. Simultaneously, GLP-1 promotes Ca(2+) influx and mobilizes an intracellular source of Ca(2+). GLP-1 sensitizes intracellular Ca(2+) release channels (ryanodine and IP (3) receptors) to stimulatory effects of Ca(2+), thereby promoting Ca(2+)-induced Ca(2+) release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K(+) channels (K-ATP), membrane depolarization, and influx of Ca(2+) through voltage-dependent Ca(2+) channels (VDCCs). Ca(2+) influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca(2+) release channels are sensitized by GLP-1, Ca(2+) influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no "fuel" is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new "feed-forward" hypothesis of beta-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects.  相似文献   

14.
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).  相似文献   

15.
CAPS1 and CAPS2 regulate dense-core vesicle release of transmitters and hormones in neuroendocrine cells, but their precise roles in the secretory process remain enigmatic. Here we show that CAPS2(-/-) and CAPS1(+/-);CAPS2(-/-) mice, despite having increased insulin sensitivity, are glucose intolerant and that this effect is attributable to a marked reduction of glucose-induced insulin secretion. This correlates with diminished Ca(2+)-dependent exocytosis, a reduction in the size of the morphologically docked pool, a decrease in the readily releasable pool of secretory vesicles, slowed granule priming, and suppression of second-phase (but not first-phase) insulin secretion. In beta cells of CAPS1(+/-);CAPS2(-/-) mice, the lowered insulin content and granule numbers were associated with an increase in lysosome numbers and lysosomal enzyme activity. We conclude that although CAPS proteins are not required for Ca(2+)-dependent exocytosis to proceed, they exert a modulatory effect on insulin granule priming, exocytosis, and stability.  相似文献   

16.
The present study was examined whether diltiazem, a L-type Ca2+ channel antagonist, could suppresses 1 methyl-4-phenylpyridinium ion (MPP+)-induced dopamine (DA) in extracellular fluid of rat striatum. Ouabain (100 microM; 100 microM or 100 pmol/microl per min) significantly enhanced the level of DA by MPP+. However, in the presence of diltiazem (100 microM) significantly suppressed the level of DA release by ouabain and MPP+. These results suggest that diltiazem suppresses Ca2+ -dependent release of DA by ouabain-induced Ca2+ overload.  相似文献   

17.
We have devised a new method that permits the investigation of exogenous secretory vesicle function using frog oocytes and bovine chromaffin granules, the secretory vesicles from adrenal chromaffin cells. Highly purified chromaffin granule membranes were injected into Xenopus laevis oocytes. Exocytosis was detected by the appearance of dopamine-beta-hydroxylase of the chromaffin granule membrane in the oocyte plasma membrane. The appearance of dopamine-beta-hydroxylase on the oocyte surface was strongly Ca(2+)-dependent and was stimulated by coinjection of the chromaffin granule membranes with InsP3 or Ca2+/EGTA buffer (18 microM free Ca2+) or by incubation of the injected oocytes in medium containing the Ca2+ ionophore ionomycin. Similar experiments were performed with a subcellular fraction from cultured chromaffin cells enriched with [3H]norepinephrine-containing chromaffin granules. Because the release of [3H]norepinephrine was strongly correlated with the appearance of dopamine-beta-hydroxylase on the oocyte surface, it is likely that intact chromaffin granules and chromaffin granule membranes undergo exocytosis in the oocyte. Thus, the secretory vesicle membrane without normal vesicle contents is competent to undergo the sequence of events leading to exocytosis. Furthermore, the interchangeability of mammalian and amphibian components suggests substantial biochemical conservation of the regulated exocytotic pathway during the evolutionary progression from amphibians to mammals.  相似文献   

18.
Treatment of AR42J cells with dexamethasone leads to an enhanced formation of amylase-containing granules and facilitates their regulated secretion. Besides the exocrine properties, AR42J cells possess a specific uptake system for [3H]GABA. The stored GABA can be released upon potassium depolarisation in a Ca(2+)-dependent manner. After treatment with dexamethasone, potassium depolarisation fails to release GABA, but instead causes a Ca(2+)-dependent secretion of amylase. Since vesicles similar to small synaptic vesicles of neurons have been identified in AR42J cells, we suggest that the regulated GABA release is mediated by this vesicle type. It is tentatively speculated that other epithelial cells, which also contain small synaptic vesicles and amino acid neurotransmitters, may release them in a similar fashion.  相似文献   

19.
Huh YH  Chu SY  Park SY  Huh SK  Yoo SH 《Biochemistry》2006,45(4):1212-1226
Recently, secretory granule Ca(2+) storage protein chromogranin B (CGB) was shown to be present in the nucleoplasm proper in a complex structure that consists of the inositol 1,4,5-trisphosphate receptor (IP(3)R)/Ca(2+) channels and the phospholipids. Further, the amounts of IP(3)Rs present in the nucleus of bovine chromaffin cells were shown to be comparable to that of the endoplasmic reticulum. Therefore, we investigated here the potential contribution of nuclear CGB on the IP(3)-dependent Ca(2+) mobilization in the nucleus, using both neuroendocrine PC12 and nonneuroendocrine NIH3T3 cells. Chromogranin A (CGA) expression in the NIH3T3 cells, which do not contain intrinsic chromogranins, increased the IP(3)-induced Ca(2+) releases in the nucleus by 45%, while CGB expression in the same cells increased the IP(3)-induced Ca(2+) releases in the nucleus by 80%. Microinjection of IP(3) into the nucleus of CGB-expressing NIH3T3 cells increased the IP(3)-dependent nuclear Ca(2+) mobilization approximately 3-fold, whereas in CGA-expressing cells it remained the same as that of control cells. In contrast, inhibition of CGA expression in PC12 cells by siRNA treatment decreased the IP(3)-induced Ca(2+) releases in the nucleus by 17%, while inhibition of CGB expression decreased the IP(3)-induced Ca(2+) releases in the nucleus by 55%. Microinjection of IP(3) into the nucleus of siCGB-treated PC12 cells decreased the IP(3)-dependent nuclear Ca(2+) mobilization by approximately 75%, whereas in siCGA-treated cells it remained the same as that of control cells. Given the presence of CGB in the nucleus, these results further highlight the critical contribution of nuclear CGB in the IP(3)-induced Ca(2+) release in the nucleus.  相似文献   

20.
Every cell or neuronal type utilizes its own specific organization of its Ca(2+) homeostasis depending on its specific function and its physiological needs. The magnocellular neurones, with their somata situated in the supraoptic and paraventricular nuclei of the hypothalamus and their nerve terminals populating the posterior hypophysis (neural lobe) are a typical and classical example of a neuroendocrine system, and an important experimental model for attempting to understand the characteristics of the neuronal organization of Ca(2+) homeostasis. The magnocellular neurones synthesize, in a cell specific manner, two neurohormones: arginine-vasopressin (AVP) and oxytocin (OT), which can be released, in a strict Ca(2+)-dependent manner, both at the axonal terminals, in the neural lobe, and at the somatodendritic level. The two types of neurones show also distinct type of bioelectrical activity, associated with specific secretory patterns. In these neurones, the Ca(2+) homeostatic pathways such as the Na(+)/Ca(2+) exchanger (NCX), the endoplasmic reticulum (ER) Ca(2+) pump, the plasmalemmal Ca(2+) pump (PMCA) and the mitochondria are acting in a complementary fashion in clearing Ca(2+) loads that follow neuronal stimulation. The somatodendritic AVP and OT release closely correlates with intracellular Ca(2+) dynamics. More importantly, the ER Ca(2+) stores play a major role in Ca(2+) homeostatic mechanism in identified OT neurones. The balance between the Ca(2+) homeostatic systems that are in the supraoptic neurones differ from those active in the terminals, in which mainly Ca(2+) extrusion through the Ca(2+) pump in the plasma membrane and uptake by mitochondria are active. In both AVP and OT nerve terminals, no functional ER Ca(2+) stores can be evidenced experimentally. We conclude that the physiological significance of the complexity of Ca(2+) homeostatic mechanisms in the somatodendritic region of supraoptic neurones and their terminals can be multifaceted, attributable, in major part, to their specialized electrical activity and Ca(2+)-dependent neurohormone release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号