首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

2.
Suspension culture cells of carrot, Daucus carota L., and sycamore, Acer pseudoplatanus L., were freeze-fractured after ultrarapid freezing without fixation or cryoprotection in a propane-jet freezer. Infrequently, rosettes (ca. 24 nm diameter) of six (occasionally five) subunits (ca. 8 nm diameter) were observed in P-face views of the plasma membrane of both taxa. When present, rosette density was approximately 1/micron 2. Generally, rosettes were less frequently seen on plasma membranes exhibiting numerous vesicle fusion figures. Due to the high quality of the freezing, cellulose microfibril impressions were rarely seen on either PF or EF views of the plasma membrane, thus precluding correlations between microfibrils on the one hand and rosettes (and terminal globules) on the other. The presence of rosettes in suspension culture cells of these two species supports the putative role of rosettes in cellulose biosynthesis in higher plants.  相似文献   

3.
Summary Dictyosome ultrastructure changes during the cell cycle in onion root meristematic cells. Changes were mainly related to cisternae and intercisternal spaces morphology. Taking each dictyosome to be composed of three different regions (CIS, medial, and TRANS), several quantitative changes were detected in some of the compartments. Many of the planimetric parameters evaluated showed higher values in medical cisternae, while CIS and TRANS remained nearly constant. We have also found an increased activity of dictyosomes, as indicated by increase in the volume fraction of vesicular attached structures. This reaches maximum values at ana-telophase in coincidence with the onset and progression of cytokinesis.Abbreviations A anaphase - Ac mean area occupied by cisternae per stack section - C CIS - CCS cell cycle stage - DA mean total dictyosome area - ISA mean area occupied by intercisternal spaces per stack section - M metaphase - N mean number of cisternae per stack - P prophase - S.E. standard error - T telophase - T TRANS - Vv volume density  相似文献   

4.
Plant cell wall is an example of a widespread natural supramolecular structure: its components are considered to be the most abundant organic compounds renewable by living organisms. Plant cell wall includes numerous components, mainly polysaccharidic; its formation is largely based on carbohydrate-carbohydrate interactions. In contrast to the extracellular matrix of most other organisms, the plant cell compartment located outside the plasma membrane is so structured that has been named “wall”. The present review summarizes data on the mechanisms of formation of this supramolecular structure and considers major difficulties and results of research. Existing approaches to the study of interactions between polysaccharides during plant cell wall formation have been analyzed, including: (i) characterization of the structure of natural polysaccharide complexes obtained during cell wall fractionation; (ii) analysis of the interactions between polysaccharides “at mixing in a tube”; (iii) study of the interactions between isolated individual plant cell wall matrix polysaccharides and microfibrils formed by cellulose-synthesizing microorganisms; and (iv) investigation of cell wall formation and modification directly in plant objects. The key stages in formation of plant cell wall supramolecular structure are defined and characterized as follows: (i) formation of cellulose microfibrils; (ii) interactions between matrix polysaccharides within Golgi apparatus substructures; (iii) interaction between matrix polysaccharides, newly secreted outside the plasma membrane, and cellulose microfibrils during formation of the latter; (iv) packaging of the formed complexes and individual polysaccharides in cell wall layers; and (v) modification of deposited cell wall layers.  相似文献   

5.
Summary The gross structure of the cell wall and the organization of the plasmalemma of the filamentous brown algaAsteronema rhodochortonoides were examined in replicas of freeze-fractured cells. The protoplasmic fracture face (PF) of the plasmalemma, apart from the single particles, exhibits two particular particle complexes, i.e., single linear arrays of closely packed particles, and well defined particle pentads. The former display a consistent relationship with the ends of microfibril imprints and therefore are considered as terminal complexes (TCs). They seem to be composed of subunits, each one consisting of two particles. The average diameter of the particles is 7 nm. The number of the subunits forming the TCs varies between 2 and 40. Short TCs, consisting of 3–5 subunits were also found on the PF of dictyosome vesicles, a fact suggesting the involvement of the Golgi apparatus in exocytosis of preformed TC portions. The occurrence, distribution and size of the TCs appear to be related to the developmental stage of the cell. A large number of TCs occur in actively growing cells, while a few or no TCs are found in differentiated cells. The pentads are rectangular structures consisting of five particles, four in the corners and one in the centre. Their dimensions are very constant, but their occurrence and distribution varies. They occur in young developing cells where TCs are few or absent, but were also observed in areas showing many TCs. In differentiated cells no pentads were found. Pentad-like structures were rarely observed on the PF of dictyosome vesicles or cisternae. The observations support the hypothesis that pentads are involved in the synthesis of matrix polysaccharides, which are the major components of brown algal cell wall and their synthesis begins before that of cellulose.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

6.
A freeze-fracture investigation of the putative cellulose synthesizing complex (terminal complex) morphology in Nitella translucens var. axillaris (A. Br.) R.D.W. internodal cells revealed single solitary EF globules and PF rosettes on the plasma membrane. The average density of rosettes in elongating internodal cells was 5.6 μm?2 with slight spatial variation observed. In only three other algal genera (all zygnematalean) have rosette / globule terminal complexes been observed, while this characteristic is common to all vascular plants and one moss thus far investigated. This evidence strongly suggests that the rosette type of terminal complex morphology is an additional characteristic of charophycean algae and lends further support to the hypothesis that this group of algae represents the evolutionary line that gave rise to vascular plants. Observations were also made from the freeze-fracture of Nitella internodal cells concerning the orientation of cell wall microfibrils and cytoskeletal elements near the plasma membrane. The pattern of microfibril orientation in growing internodal cells is initially transverse to the cell long axis, becoming progressively axial presumably due to the strain of elongation. In mature internodal cells, the pattern of microfibril orientation is helicoidal. Microtubules appressed to the inner surface of the plasma membrane are oriented parallel to the most recently formed microfibrils in elongating and mature internodal cells.  相似文献   

7.
Abstract

Some ultrastructural features of cells of the marine haptophycean alga, Ochrosphaera neapolitana Schussnig in the palmelloid stage were examined. Chloroplasts which are contained in a compartment isolated from the cytoplasm by ER profiles and nuclear envelope, display trilamellated thylakoids running along the major axis. The stalked pyrenoid with inner bilamellated thylakoids, protrudes in a large membrane-bounded vacuole. Other structures, as the haptonematic and flagellar bases, autophagic vacuoles and mitochondria, are typical of the chrysophycean and haptophycean genera so far investigated.

The Golgi apparatus is represented by a single dictyosome composed of stacked cisternae fonctioning in a way that they form organic scales which constitute the main part of the cell covering. The scales, build up of microfibrils disposed parallel each to other, lie in cisternal lumina of the dictyosomal maturing face; scaly cisternae are numerous in the peripheral cytoplasm and are observed merging in the plasma membrane and discharging the content outside the protoplast.

Dictyosomal activity is evidenced morphologically by massive vesicle production. Three kinds of membrane-bounded vesicles were identified in the present material: i) inner-granulated vesicles, arising from the maturation face; ii) coated vesicles, scattered in the cytoplasm or at the periphery of the golgi body, and iii) dense-cored vesicles, present in the proximity of the maturation face. The possible functional relationships related to scale production and assembly outside the protoplast, and between the nucleus and dictyosome are discussed.  相似文献   

8.
The effects of four potential inhibitors of dictyosome activityon the root cap secretory system were monitored by visual estimationof slime droplet reformation rates and by quantitative microscopyof the secretory cells. Only monensin was found to affect bothdroplet reformation and cell structure. While some of our structuralobservations on the effects of this drug, such as swelling ofvesicles and dictyosome cisternae, agreed with those made previously,others did not. We are able to confirm a real increase in vesiclenumber, in addition to the numerical increase in vesicle profilesthat follows from an increase in vesicle size. Formation ofcup-shaped dictyosomes and separation of cisternae were foundto be just as prevalent in the normal and in the solvent controls,especially when fixed with permanganate. Scopoletin, tunicamycin and 2, 6-dichlorobenzonitrile all affecteddroplet formation but had no significant effect on cell structure.It is suggested that these chemicals were affecting water flowinto the slime droplet, rather than directly inhibiting Golgi-activityor release of carbohydrates by the secretory vesicles. The problems of using the root cap system for the identificationof specific Golgi inhibitors are discussed. Key words: Maize, Root cap secretion, Golgi activity inhibitors, Dichlorobenzonitrile, Monensin, Scopoletin, Tunicamycin  相似文献   

9.
After treatment of cress roots with cytochalasin B (cytB) (25 μg/ml. 5.2 × 10?5 M) for 4 h, marked structural changes are observed in the peripheral secretory calyptra cells. Deposits of slime outside the plasma membrane are smaller than in cells of untreated roots, whereas secretory vesicles accumulate within the treated cells. Dictyosomes are no longer present and the number of cisternae of rough endoplasmic reticulum surrounding the nucleus is increased at least three-fold. After an 8 h leaching of the drug, the structure of the secretory cells changes again. Accumulation of secretory vesicles no longer takes place, slime is deposited outside the plasma membrane and the number of ER cisternae surrounding the nucleus decreases. On the other hand, dictyosomes are now present. However, they are different from those in the hypertrophied stage of cells exhibiting high secretory activity, but are similar to those of an early developmental stage found at the beginning of the secretion process. This indicates that the dictyosomes are rebuilt during the leaching procedure. The results show that ER membranes accumulate near the nuclear envelope. They also indicate that bulk membrane material is transferred from the RER to the plasma membrane via dictyosome membranes and secretory vesicles, i.e. that membrane flow occurs in secretory cells of higher plants.  相似文献   

10.
How do cell walls regulate plant growth?   总被引:11,自引:0,他引:11  
The cell wall of growing plant tissues has frequently been interpreted in terms of inextensible cellulose microfibrils 'tethered' by hemicellulose polymers attached to the microfibril surface by hydrogen bonds, with growth occurring when tethers are broken or 'peeled' off the microfibril surface by expansins. This has sometimes been described as the 'sticky network' model. In this paper, a number of theoretical difficulties with this model, and discrepancies between predicted behaviour and observations by a number of researchers, are noted. (i) Predictions of cell wall moduli, based upon the sticky network model, suggest that the cell wall should be much weaker than is observed. (ii) The maximum hydrogen bond energy between tethers and microfibrils is less than the work done in expansion and therefore breakage of such hydrogen bonds is unlikely to limit growth. (iii) Composites of bacterial cellulose with xyloglucan are weaker than pellicles of pure cellulose so that it seems unlikely that hemicelluloses bind the microfibrils together. (iv) Calcium chelators promote creep of plant material in a similar way to expansins. (v) Reduced relative 'permittivities' inhibit the contraction of cell wall material when an applied stress is decreased. Revisions of the sticky network model that might address these issues are considered, as are alternatives including a model of cell wall biophysics in which cell wall polymers act as 'scaffolds' to regulate the space available for microfibril movement. Experiments that support the latter hypothesis, by demonstrating that reducing cell wall free volume decreases extensibility, are briefly described.  相似文献   

11.
Though the dictyosome of the Golgi apparatus appears to be generally distributed in plant and animal cells, it is here described for the first time in the fungi. The present report illustrates, in electron micrographs of thin sections, the characteristic structure of the Golgi dictyosome in a special cell type of a supporting pseudo-tissue (the inner ectal excipulum) of a highly evolved Ascomycete, Neobulgaria pura (Fr.) Petrak, a monotypic discomycete. This organelle may secrete the gelatinous matrix filling the cup formed by the inner ectal excipulum. All the other cells in this species appear more typical of fungal cells; i.e., they have no dictyosome and, unlike the cup-forming cells, they show characteristic continuities of the plasma membrane with the perinuclear cisternae. The dictyosome, in those cells in which it appears in this fungus, is formed by a series of vesiculations of the outer component of the nuclear envelope that align to form a stack of sacs. The sacs near the nucleus are flattened (by what appears to be an intermembrane cement) while those near the plasma membrane are more distended. These observations suggest three possibilities: first, fungi may be more closely related to other eukaryotic cells than previously suspected from electron microscopic studies; second, the outer nuclear membrane may have been the primitive precursor of the dictyosome; and third, the inverse relationship of the occurrence of the nuclear membrane plasma membrane continuities and the dictyosome suggests that the latter may have evolved as a means of removing from the cell the products of reactions occurring on a discontinuous membrane system.  相似文献   

12.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

13.
Summary Rosettes of six particles have been visualized by freeze-fracture in the protoplasmic fracture (PF) faces of: a) the plasma membrane, b) Golgi cisternae, and c) Golgi-derived vesicles in mesophyll cells ofZinnia elegans that had been induced to differentiate synchronously into tracheary elements in suspension culture. These rosettes have been observed previously in the PF face of the plasma membranes of a variety of cellulose-synthesizing cells and are thought to be important in cellulose synthesis. InZinnia tracheary elements, the rosettes are localized in the membrane over regions of secondary wall thickening and are absent between thickenings. The observation of rosettes in the Golgi cisternae and vesicles suggests that the Golgi apparatus is responsible for the selective transport and exocytosis of rosettes in higher plants, as has been previously indicated in the algaMicrasterias (Giddings et al. 1980). The data presented indicate that the Golgi apparatus has a critical role in the control of cell wall deposition because it is involved not only in the synthesis and export of matrix components but also in the export of an important component of the cellulose synthesizing apparatus. The rosettes are present in the plasma membrane and Golgi vesicles throughout the enlargement of the secondary thickening, suggesting that new rosettes must be continually inserted into the membrane to achieve complete cell wall thickening.Abbreviations EF Golgi vesicles, exoplasmic fracture; the plasma membrane, extracellular fracture - PF protoplasmic fracture  相似文献   

14.
The supramolecular organization of the plasma membrane of apical cells in shoot filaments of the marine red alga Porphyra yezoensis Ueda (conchocelis stage) was studied in replicas of rapidly frozen and fractured cells. The protoplasmic fracture (PF) face of the plasma membrane exhibited both randomly distributed single particles (with a mean diameter of 9.2 ± 0.2 nm) and distinct linear cellulose microfibril-synthesizing terminal complexes (TCs) consisting of two or three rows of linearly arranged particles (average diameter of TC particles 9.4 plusmn; 0.3 nm). The density of the single particles of the PF face of the plasma membrane was 3000 μm?2, whereas that of the exoplasmic fracture face was 325 μm?2. TCs were observed only on the PF face. The highest density of TCs was at the apex of the cell (mean density 23.0 plusmn; 7.4 TCs μm?2 within 5 μm from the tip) and decreased rapidly from the apex to the more basal regions of the cell, dropping to near zero at 20 μm. The number of particle subunits of TCs per μm2 of the plasma membrane also decreased from the tip to the basal regions following the same gradient as that of the TC density. The length of TCs increased gradually from the tip (mean length 46.0 plusmn; 1.4 nm in the area at 0–5 μm from the tip) to the cell base (mean length 60.0 plusmn; 7.0 μm in the area at 15–20 μm). In the very tip region (0–4 μm from the apex), randomly distributed TCs but no microfibril imprints were observed, while in the region 4–9 μm from the tip microfibril imprints and TCs, both randomly distributed, occurred. Many TCs involved in the synthesis of cellulose microfibrils were associated with the ends of microfibril imprints. Our results indicate that TCs are involved in the biosynthesis, assembly, and orientation of cellulose microfibrils and that the frequency and distribution of TCs reflect tip growth (polar growth) in the apical shoot cell of Porphyra yezoensis. Polar distribution of linear TCs as “cellulose synthase” complexes within the plasma membrane of a tip cell was recorded for the first time in plants.  相似文献   

15.
All plant cells are provided with the necessary rigidity to withstand the turgor by an exterior cell wall. This wall is composed of long crystalline cellulose microfibrils embedded in a matrix of other polysaccharides. The cellulose microfibrils are deposited by mobile membrane bound protein complexes in remarkably ordered lamellar textures. The mechanism by which these ordered textures arise, however, is still under debate. The geometrical model for cell wall deposition proposed by Emons and Mulder (Proc. Natl. Acad. Sci. 95, 7215–7219, 1998) provides a detailed approach to the case of cell wall deposition in non-growing cells, where there is no evidence for the direct influence of other cellular components such as microtubules. The model successfully reproduces even the so-called helicoidal wall; the most intricate texture observed. However, a number of simplifying assumptions were made in the original calculations. The present work addresses the issue of the robustness of the model to relaxation of these assumptions, by considering whether the helicoidal solutions survive when three aspects of the model are varied. These are: (i) the shape of the insertion domain, (ii) the distribution of lifetimes of individual CSCs, and (iii) fluctuations and overcrowding. Although details of the solutions do change, we find that in all cases the overall character of the helicoidal solutions is preserved.  相似文献   

16.
The cell wall is the major limiting factor for plant growth. Wall extension is thought to result from the loosening of its structure. However, it is not known how this is coordinated with wall synthesis. We have identified two novel allelic cellulose-deficient dwarf mutants, kobito1-1 and kobito1-2 (kob1-1 and kob1-2). The cellulose deficiency was confirmed by the direct observation of microfibrils in most recent wall layers of elongating root cells. In contrast to the wild type, which showed transversely oriented parallel microfibrils, kob1 microfibrils were randomized and occluded by a layer of pectic material. No such changes were observed in another dwarf mutant, pom1, suggesting that the cellulose defect in kob1 is not an indirect result of the reduced cell elongation. Interestingly, in the meristematic zone of kob1 roots, microfibrils appeared unaltered compared with the wild type, suggesting a role for KOB1 preferentially in rapidly elongating cells. KOB1 was cloned and encodes a novel, highly conserved, plant-specific protein that is plasma membrane bound, as shown with a green fluorescent protein-KOB1 fusion protein. KOB1 mRNA was present in all organs investigated, and its overexpression did not cause visible phenotypic changes. KOB1 may be part of the cellulose synthesis machinery in elongating cells, or it may play a role in the coordination between cell elongation and cellulose synthesis.  相似文献   

17.
The assembly of cellulose microfibrils was investigated in artificially induced protoplasts of the alga, Valonia macrophysa (Siphonocladales). Primary-wall microfibrills, formed within 72 h of protoplast induction, are randomly oriented. Secondary-wall lamellae, which are produced within 96 h after protoplast induction, have more than three orientations of highly ordered microfibrils. The innermost, recently deposited micofibrils are not parallel with the cortical microtubules, thus indicating a more indirect role of microtubules in the orientation of microfibrils. Fine filamentous structures with a periodicity of 5.0–5.5 nm and the dimensions of actin were observed adjacent to the plasma membrane. Linear cellulose-terminal synthesizing complexes (TCs) consisting of three rows, each with 30–40 particles, were observed not only on the E fracture (EF) but also on P fracture (PF) faces of the plasma membrane. The TC appears to span both faces of the bimolecular leaflet. The average length of the TC is 350 nm, and the number of TCs per unit area during primary-wall synthesis is 1 per m2. Neither paired TCs nor granule bands characteristic of Oocystis were observed. Changes in TC structure and distribution during the conversion from primary- to secondary-wall formation have been described. Cellulose microfibril assembly in Valonia is discussed in relation to the process among other eukaryotic systems.Abbreviations TC terminal complex - EF E (outer leaflet) fracture face of the plasma membrane - PF P (inner leaflet) fracture face of the plasma membrane - MT microtubule - PS protoplasmic surface of the membrane  相似文献   

18.
Cell wall structure and biogenesis in the unicellular green alga, Oocystis apiculata, is described. The wall consists of an outer amourphous primary layer and an inner secondary layer of highly organized cellulosic microfibrils. The primary wall is deposited immediately after cytokinesis. Golgi-derived products contribute to this layer. Cortical microtubules underlie the plasma membrane immediately before and during primary wall formation. They function in maintaining the elliptical cell shape. Following primary wall synthesis, Golgi-derived materials accumulate on the cell surface to form the periplasmic layer. This layer functions in the deposition of coating and cross-linking substances which associate with cellulosic microfibrils of the incipient secondary wall. Secondary wall microfibrils are assembled in association with the plasma membrane. Freeze-etch preparations of untreated, living cells reveal linear terminal complexes in association with growing cellulosic microfibrils. These complexes are embedded in the EF fracture face of the plasma membrane. The newly synthesized microfibril lies in a groove of the outer leaflet of the plasma membrane. The groove is decorated on the EF fracture face by perpendicular structures termed “ridges.” The ridges interlink with definitive rows of particles associated with the PF fracture face of the inner leaflet of the plasma membrane. These particles are termed “granule bands,” and they function in the orientation of the newly synthesized microfibrils. Microfibril development in relation to a coordinated multienzyme complex is discussed. The process of cell wall biogenesis in Oocystis is compared to that in higher plants.  相似文献   

19.
Summary With freeze-fracturing sperm cells appear to be fractured preferentially through the plasma membranes. Only few fracture planes through the cytoplasm are found. Both the PF as well as the EF side of the sperm cell plasma membranes show a slightly undulating surface and contain intramembrane particles. The particle distribution is irregular and does not show any clustering. The EF side of the plasmamembrane contains approximately 3 times more particles per m2 than the PF side.Abbreviations EF extraplasmatic fracture face - IMP intramembrane particles - FDA fluorescein diacetate - PF plasmatic fracture face  相似文献   

20.
Tetsuko Noguchi 《Protoplasma》1976,87(1-3):163-178
Summary Organelles in resting and growing cells ofMicrasterias americana were examined using electron microscopy after cytochemical procedures for four kinds of phosphatases, acid phosphatase (ACPase), alkaline phosphatase (ALPase), thiamine pyrophosphatase (TPPase), and inosine diphosphatase (IDPase), and osmium tetroxide reduction. Special attention was paid to activities in the Golgi apparatus.In resting cells, positive reactions for ACPase and TPPase were observed in all cisternae of the dictyosome, especially in the peripheral parts. A positive IDPase reaction was seen in one central cisterna and was frequent in the distal-most cisterna. Reduction of osmium tetroxide was seen in the proximal cisternae.In early growing cells, the dictyosomes gave positive reactions for ACPase in the proximal cisternae and the distal cisterna, while in late growing cells only in proximal cisternae. Both in early and late growing cells, the dictyosomes were positive for TPPase and IDPase in the distal cisternae and vesicles derived from the distal cisternae, and for the reduction of osmium tetroxide in the proximal cisternae. ALPase activity was detected in the growing cell wall but not in the dictyosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号