首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aberrant glycosylation occurs in essentially all types of human cancers. A difference in glycopattern of proteins will result in a change of function of the proteins. The lectin from Helix pomatia (HPA) recognizes N-acetylgalactosaminylated glycoproteins and very consistent results over the increased binding of HPA in tissue sections are associated with metastasis progression and poor patient prognosis in a range of human adenocarcinomas. The induced modification of protein function after changed glycosylation is unknown, and as a part in characterizing the glycoproteins carrying the specific carbohydrates, we analyzed the major HPA binding proteins in sera from healthy women, women with primary breast cancer with no metastasis (bcmet-), and women with metastasizing breast cancer (bcmet+) using lectin affinity chromatography and lectin blotting. The binding ligands were further identified using mass spectrometry (MALDI-TOF MS) to confirm the captured glycoproteins. The major HPA binding proteins in serum were found to be IgA1, complement factor C3, von Willebrand factor (vWF), alpha-2-macroglobulin and IgM. This set of antigens is a panel of candidates for useful HPA related biomarkers in sera, but our results also emphasize the fact that the blood group phenotypes are of most importance when using the lectin HPA in recognition of cancer biomarkers in sera and plasma. The results emphasize that interpretation of an individual change in the glycosylation pattern of a specific tumor marker always needs to be analyzed in its right context. This study shows that the blood group phenotypes can have a major impact on the results when analyzing HPA lectin binding.  相似文献   

3.

Background

Protein glycosylation is an important post-translational modification shown to be altered in all tumour types studied to date. Mucin glycoproteins have been established as important carriers of O-linked glycans but other glycoproteins exhibiting altered glycosylation repertoires have yet to be identified but offer potential as biomarkers for metastatic cancer.

Methodology

In this study a glycoproteomic approach was used to identify glycoproteins exhibiting alterations in glycosylation in colorectal cancer and to evaluate the changes in O-linked glycosylation in the context of the p53 and KRAS (codon 12/13) mutation status. Affinity purification with the carbohydrate binding protein from Helix pomatia agglutinin (HPA) was coupled to 2-dimensional gel electrophoresis with mass spectrometry to enable the identification of low abundance O-linked glycoproteins from human colorectal cancer specimens.

Results

Aberrant O-linked glycosylation was observed to be an early event that occurred irrespective of the p53 and KRAS status and correlating with metastatic colorectal cancer. Affinity purification using the lectin HPA followed by proteomic analysis revealed annexin 4, annexin 5 and CLCA1 to be increased in the metastatic colorectal cancer specimens. The results were validated using a further independent set of specimens and this showed a significant association between the staining score for annexin 4 and HPA and the time to metastasis; independently (annexin A4: Chi square 11.45, P = 0.0007; HPA: Chi square 9.065, P = 0.0026) and in combination (annexin 4 and HPA combined: Chi square 13.47; P = 0.0002).

Conclusion

Glycoproteins showing changes in O-linked glycosylation in metastatic colorectal cancer have been identified. The glycosylation changes were independent of p53 and KRAS status. These proteins offer potential for further exploration as biomarkers and potential targets for metastatic colorectal cancer.  相似文献   

4.
The lectin from Helix pomatia (HPA) binds to adenocarcinomas with a metastatic phenotype but the glycoconjugates of cancer cells that bind to the lectin have yet to be characterized in detail. We used a model of metastatic (HT29) and nonmetastatic (SW480) human colorectal cancer cells and a proteomic approach to identify HPA binding glycoproteins. Cell membrane proteins purified by HPA affinity chromatography, were separated by 2-DE and analyzed by MS. Competitive inhibition experiments with N-acetylgalactosamine, N-acetylglucosamine, and sialic acid confirmed that HPA binding was via a glycan-mediated interaction. Western blot analysis showed that HPA binds to proteins not recognized by an antibody against blood group A epitope. The proteomic study showed the main HPA binding partners include integrin alphav/alpha6 and annexin A2/A4. These proteins were found complexed with microfilament proteins alpha and beta tubulin, actin, and cytokeratins 8 and 18. HPA also bound to Hsp70, Hsp90, TRAP-1, and tumor rejection factor 1. This study revealed that the prognostic utility of HPA lies in its ability to bind simultaneously to many glycoproteins involved in cell migration and signaling, in addition, the proteins recognized by HPA are glycosylated with structures distinct from the blood group A epitope.  相似文献   

5.
Altered protein glycosylation compared with the disease-free state is a universal feature of cancer cells. It has long been established that distinct glycan structures are associated with specific forms of cancer, but far less is known about the complete array of glycans associated with certain tumors. The cancer glycome has great potential as a source of biomarkers, but progress in this field has been hindered by a lack of available techniques for the elucidation of disease-associated glycosylation. In the present study, lectin microarrays consisting of 45 lectins with different binding preferences covering N- and O-linked glycans were coupled with evanescent-field activated fluorescent detection in the glycomic analysis of primary breast tumors and the serum and urine of patients with metastatic breast cancer. A single 50 μm section of a primary breast tumor or <1 μL of breast cancer patient serum or urine was sufficient to detect glycosylation alterations associated with metastatic breast cancer, as inferred from lectin-binding patterns. The high-throughput, sensitive and relatively simple nature of the simultaneous analysis of N- and O-linked glycosylation following minimal sample preparation and without the need for protein deglycosylation makes the lectin microarray analysis described a valuable tool for discovery phase glycomic profiling.  相似文献   

6.
The Tn antigen (GalNAc alpha-O-Ser/Thr) as defined by the binding of the lectin, helix pomatia agglutinin (HPA) or anti-Tn monoclonal antibodies, is known to be exposed in a majority of cancers, and it has also been shown to correlate positively with the metastatic capacity in breast carcinoma. The short O-glycan that forms the antigen is carried by a number of different proteins. One potential carrier of the Tn antigen is immunoglobulin A1 (IgA1), which we surprisingly found in tumour cells of the invasive parts of primary breast carcinoma. Conventional immunohistochemical analysis of paraffin-embedded sections from primary breast cancers showed IgA1 to be present in the cytoplasm and plasma membrane of 35 out of 36 individual primary tumours. The immunohistochemical staining of HPA and anti-Tn antibody (GOD3-2C4) did to some extent overlap with the presence of IgA1 in the tumours, but differences were seen in the percentage of stained cells and in the staining pattern in the different breast cancers analysed. Anti-Tn antibody and HPA were also shown to specifically bind to a number of possible constellations of the Tn antigen in the hinge region of IgA1. Both reagents could also detect the presence of Tn positive IgA in serum. On average 51% of the tumour cells in the individual breast cancer tumour sections showed staining for IgA1. The overall amount of staining in the invasive part of the tumour with the anti Tn antibody was 67%, and 93% with HPA. The intra-expression or uptake of IgA1 in breast cancer makes it a new potential carrier of the tumour associated and immunogenic Tn antigen.  相似文献   

7.
In this study we investigated the levels of expression of sialic acid and N-acetylgalactosamine residues on the cell surface of a normal intestinal epithelium cell line, IEC-6, and in two colon adenocarcinoma cell lines with different metastatic potential, Caco-2 and HCT-116. Glycoprotein expression was estimated initially by cytochemistry with WGA and HPA lectins and biochemistry with isolated plasma membrane fractions of the cells. Fluorescence and electron microscopic analyses revealed differences in the expression profile of carbohydrates recognized by the lectins used on the cell surface of IEC-6, Caco-2, and HCT-116 cells. Lectin blotting identified a range of eight HPA-binding glycoprotein bands with molecular weights of 16-66 kD in Caco-2 cells, six glycoproteins of 16-36 kD, and three protein bands of 35, 24, and 21 kD in IEC-6 cells. A minor band of 66 kD and a major one of 50 kD for WGA-binding glycoproteins were observed in IEC-6 cells and seven glycoproteins of 18-97 kD in Caco-2 and HCT-116 cells but with a visible higher expression of these glycoproteins in the latter. Furthermore, significant quantitative difference in levels of expression of WGA- but not of HPA-binding glycoconjugates was noted, as analyzed by high-resolution scanning electron microscopy using backscattered electron images of cells incubated with gold-labeled lectins.  相似文献   

8.
Helix pomatia agglutinin (HPA), the lectin from the albumen gland of the Roman snail, has been used in histochemical studies relating glycosylation changes to the metastatic potential of solid tumors. To facilitate the use of HPA in a clinical (diagnostic) setting, detailed analysis of the lectin, including cloning and recombinant production of HPA, is required. A combination of isoelectric focusing, amino acid sequence analysis, and cloning revealed two polypeptides in native HPA preparations (HPAI and HPAII), both consistent with GalNAc-binding lectins of the H-type family. Pairwise sequence alignment showed that HPAI and HPAII share 54% sequence identity whereas molecular modeling using SWISS-MODEL suggests they are likely to adopt similar tertiary structure. The inherent heterogeneity of native HPA highlighted the need for production of functional recombinant protein; this was addressed by preparing His-thioredoxin-tagged fusion products in Escherichia coli Rosetta-gami B (DE3) cells. The recombinant lectins agglutinated human blood group A erythrocytes whereas their oligosaccharide specificity, evaluated using glycan microarrays, showed that they predominantly bind glycans with terminal α-GalNAc residues. Surface plasmon resonance with immobilized GalNAc-BSA confirmed that recombinant HPAI and HPAII bind strongly with this ligand (K(d) = 0.60 nm and 2.00 nm, respectively) with a somewhat higher affinity to native HPA (K(d) = 7.67 nm). Recombinant HPAII also bound the breast cancer cells of breast cancer tissue specimens in a manner similar to native lectin. The recombinant HPA described here shows important potential for future studies of cancer cell glycosylation and as a reagent for cancer prognostication.  相似文献   

9.
I Virtanen 《Histochemistry》1990,94(4):397-401
Fluorochrome-coupled Helix pomatia agglutinin (HPA), but not other lectin-conjugates with the same nominal specificity, bound specifically to the Golgi apparatus in cultured human fibroblasts, revealing a cytoplasmic juxtanuclear reticular structure. Unlike other Golgi-binding lectins the HPA-conjugates did not bind to the cell surface membrane or pericellular matrix. Experiments with 35S-methionine-labeled cells showed that HPA recognized two glycoproteins of Mr 170,000 and 400,000 among the secreted products of fibroblasts and two major cellular glycoproteins of Mr 40,000 and Mr 180,000 in Triton X-100 extracts of the cells. The two cellular HPA-binding polypeptides were also found in cells depleted of secretory products and in cells pulse-labeled shortly with 35S-methionine and then chased with methionine containing medium up to 12 h. These findings suggest that the two cellular glycoproteins recognized by HPA are retained in the Golgi apparatus and are therefore not precursors of secretory proteins. The results suggest that there are two endogenous, Golgi apparatus-specific glycoproteins in cultured human fibroblasts with terminal non-reducing O-glycosidic N-acetyl galactosaminyl residues.  相似文献   

10.
Many glycoproteins contain multiple glycosylation sites that can present multi-valent epitopes for antigenic recognition. Release of the oligosaccharides results in loss of avidity of antibody binding, which has been overcome by reforming clustered ligands, usually by reductive amination of free reducing oligosaccharides to poly-amine groups. We have adapted this approach to hydrazinolytic release of O-linked chains of mucin glycoproteins and 'one-pot' microscale coupling to poly-L-lysine (PLL). The conjugated PLL adheres to nitrocellulose membranes through washing procedures required for antibody or lectin overlay and detection. We show evidence for the applicability of this technique using lectin and antibody reactivity to the oligosaccharides of pigeon intestinal mucins, which have been implicated in the allergic disease pigeon fanciers' lung.  相似文献   

11.
As only a few cell surface markers for dendritic cells (DC) have been identified to date, this study examined the expression of ligands for lectin on different human DC populations. The ability of Concanavalin A (Con A), Wheat Germ Agglutinin (WGA), peanut agglutinin (PNA), and Helix pomatia (HPA) to bind to cell lines and PBMC and DC populations was analyzed by flow cytometry and specificity of binding confirmed using inhibitory and noninhibitory sugars. The cell lines showed non-lineage-restricted binding with Con A and WGA, independent of sialidase treatment. HPA and PNA bound to a restricted number of lines, but showed broad reactivity after sialidase treatment. The peripheral blood mononuclear cells (PBMC) and directly isolated blood DC, activated CD83(+) blood DC, epidermal Langerhans cells (LC), and monocyte-derived DC (Mo-DC) showed strong binding of Con A and WGA, both before and after sialidase treatment. No HPA binding ligands were detected on PBMC populations, including directly isolated blood DC. Following sialidase treatment CD3(+), CD16(+), and a subset of CD19(+) lymphocytes bound HPA. The lectin PNA bound weakly to CD14(+) monocytes and a subpopulation of circulating DC that were HLA-DR(hi)CDw123 Dr(hi)CDw123(dim)/(neg)CD11c(+). The HLA-DR(mod)CDw123(hi)CD11c(neg) subpopulation did not bind PNA. Without sialidase treatment LC expressed both HPA and PNA ligands, but these were either absent on activated CD83(+) blood DC or weakly expressed on Mo-DC. Following sialidase treatment PBMC populations, activated CD83(+) blood DC, and Mo-DC became PNA positive. Thus human DC express several lectin ligands and PNA binding identifies a subset of blood DC. That may reflect discrete changes associated with stages of DC development or functional maturation.  相似文献   

12.
Protein glycosylation has an important influence on a broad range of molecular interactions in eukaryotes, but is comparatively rare in bacteria. Several antigens from Mycobacterium tuberculosis, the causative agent of human tuberculosis, have been identified as glycoproteins on the basis of lectin binding, or by detailed structural analysis. By production of a set of alkaline phosphatase (PhoA) hybrid proteins in a mycobacterial expression system, the peptide region required for glycosylation of the 19 kDa lipoprotein antigen from M.tuberculosis was defined. Mutagenesis of two threonine clusters within this region abolished lectin binding by PhoA hybrids and by the 19 kDa protein itself. Substitution of the threonine residues also resulted in generation of a series of smaller forms of the protein as a result of proteolysis. In a working model to account for these observations, we propose that the role of glycosylation is to regulate cleavage of a proteolytically sensitive linker region close to the acylated N-terminus of the protein.  相似文献   

13.
Membrane differentiation markers of airway epithelial secretory cells   总被引:2,自引:0,他引:2  
We describe here a system for culturing epithelial cells isolated from hamster trachea, which results in a highly enriched population of mucus-secreting cells. The culture system has enabled us to study the process of secretory cell differentiation in vitro. We found that epithelial secretory cells, in vivo and after 5 days in vitro, selectively bind the lectin Helix pomatia agglutinin (HPA) to apical and, to a lesser extent, basolateral surfaces as well as to mucin granules and intracellular secretory organelles. SDS-PAGE gels of detergent extracts of secretory cells cultured for 5 days reveal three HPA-binding glycoproteins with MW of 120 KD, 220 KD, and greater than 400 KD. The high-MW glycoprotein appears identical to mucin, since it is found in secretions from intact trachea and in spent media from 5-day cultures. It does not appear in spent media from 3-day cultures when cells contain few mucous granules and secrete little mucin. The 220 KD HPA-binding glycoprotein is also present in 5-day but not in 3-day cultures. In contrast, the 120 KD glycoprotein is present at both times. HPA-gp120 is a hydrophobic integral membrane protein, whereas HPA-gp220 and mucin are hydrophilic and are membrane associated. These studies define three membrane glycoproteins, one of which is specific for the tracheal epithelial secretory cell regardless of its mucous content, whereas the other two glycoproteins correlate with mucin secretion. They also demonstrate that, in the fully differentiated state, mucin is bound in a non-covalent fashion to the apical plasma membrane of the tracheal epithelial secretory cell.  相似文献   

14.
Aberrant glycosylation occurs in the majority of human cancers and changes in mucin-type O-glycosylation are key events that play a role in the induction of invasion and metastases. These changes generate novel cancer-specific glyco-antigens that can interact with cells of the immune system through carbohydrate binding lectins. Two glyco-epitopes that are found expressed by many carcinomas are Tn (GalNAc-Ser/Thr) and STn (NeuAcα2,6GalNAc-Ser/Thr). These glycans can be carried on many mucin-type glycoproteins including MUC1. We show that the majority of breast cancers carry Tn within the same cell and in close proximity to extended glycan T (Galβ1,3GalNAc) the addition of Gal to the GalNAc being catalysed by the T synthase. The presence of active T synthase suggests that loss of the private chaperone for T synthase, COSMC, does not explain the expression of Tn and STn in breast cancer cells. We show that MUC1 carrying both Tn or STn can bind to the C-type lectin MGL and using atomic force microscopy show that they bind to MGL with a similar deadadhesion force. Tumour associated STn is associated with poor prognosis and resistance to chemotherapy in breast carcinomas, inhibition of DC maturation, DC apoptosis and inhibition of NK activity. As engagement of MGL in the absence of TLR triggering may lead to anergy, the binding of MUC1-STn to MGL may be in part responsible for some of the characteristics of STn expressing tumours.  相似文献   

15.
Changes in the glycosylation of asparagine-linked oligosaccharides have been shown in various tumor cells, including human colon cancer. Attempts were made to elucidate the difference in Asn-linked oligo-saccharides attached to lysosomal membrane glycoproteins isolated from sublines of human colon carcinoma exhibiting high and low metastatic potentials in nude mice. Lysosomal membrane glycoproteins (lamp) 1 and 2 were immunoprecipitated from the cells after labeling with radioactive sugars, and the glycopeptides prepared were fractionated by serial lectin affinity chromatography employing immobilized concanavalin A, Datura stramonium agglutinin, and tomato lectin. Comparison of Asn-linked oligosaccharides from the different colonic carcinoma cells revealed the following features. First, the highly metastatic carcinoma cells express more poly-N-acetyllactosaminyl side chains with branched galactose residues than cells with low metastatic potential. Second, sialylation is more significant in the highly metastatic carcinoma cells than in the poorly metastatic ones. Conversely, N-acetyllactosamine units are less fucosylated in the highly metastatic cells than in poorly metastatic cells. These structural changes were apparently caused by the increase in sialyltransferase and the decrease in alpha 1----3 fucosyltransferase in the highly metastatic cells. The results also suggest that highly metastatic carcinoma cells express more sialyl Lex structures at the termini of poly-N-acetyllactosaminyl side chains than poorly metastatic carcinoma cells. Further, highly metastatic cells were found to express more lamp-1 and lamp-2 on the cell surface. These results were found to be correlated to the increased expression of sialyl Lex structures with high affinity binding of anti-sialyl Lex antibody on highly metastatic cells. Increased expression of sialyl Lex in the poly-N-acetyllactosamines of the cell surface may contribute to the metastatic behavior of the cells, assuming that this structure can serve as a better ligand for selectins present on endothelial cells and platelets.  相似文献   

16.
Peanut (Arachis hypogaea) agglutinin (PNA) is extensively used as tumour marker as it strongly recognises the cancer specific T antigen (Galbeta1-->3GalNAc-), but not its sialylated version. However, an additional specificity towards Galbeta1-->4GlcNAc (LacNAc), which is not tumour specific, had been attributed to PNA. For correct interpretation of lectin histochemical results we examined PNA sugar specificity using naturally occurring or semi-synthetic glycoproteins, matrix-immobilised galactosides and lectin-binding tissue glycoproteins, rather than mono- or disaccharides as ligands. Dot-blots, transfer blots or polystyrene plate coatings of the soluble glycoconjugates were probed with horse-radish peroxidase (HRP) conjugates of PNA and other lectins of known specificity. Modifications of PNA-binding glycoproteins, including selective removal of O-linked oligosaccharides and treatment with glycosidases revealed that Galbeta1-->4GlcNAc (LacNAc) was ineffective while terminal alpha-linked galactose (TAG) as well as exposed T antigen (Galbeta1-->3 GalNAc-) was excellent as sugar moiety in glycoproteins for their recognition by PNA. When immobilised, melibiose was superior to lactose in PNA binding. Results were confirmed using TAG-specific human serum anti-alpha-galactoside antibody.  相似文献   

17.
Dam TK  Brewer CF 《Biochemistry》2008,47(33):8470-8476
Many biological ligands are composed of clustered binding epitopes. However, the effects of clustered epitopes on the affinity of ligand-receptor interactions in many cases are not well understood. Clustered carbohydrate epitopes are present in naturally occurring multivalent carbohydrates and glycoproteins, which are receptors on the surface of cells. Recent studies have provided evidence that the enhanced affinities of lectins, which are carbohydrate binding proteins, for multivalent carbohydrates and glycoproteins are due to internal diffusion of lectin molecules from epitope to epitope in these multivalent ligands before dissociation. Indeed, binding of lectins to mucins, which are large linear glycoproteins, appears to be similar to the internal diffusion mechanism(s) of protein ligands binding to DNA, which have been termed the "bind and slide" or "bind and hop" mechanisms. The observed increasing negative cooperativity and gradient of decreasing microaffinity constants of a lectin binding to multivalent carbohydrates and glycoproteins result in an initial fraction of lectin molecules that bind with very high affinity and dynamic motion. These findings have important implications for the mechanisms of binding of lectins to mucins, and for other ligand-biopolymer interactions and clustered ligand-receptor systems in general.  相似文献   

18.
Labeled lectins with binding specificity to the hexose components of mucus glycoproteins (HPA, RCA I, PNA, Con A, WGA, and UEA I) were used to demonstrate structural differences in the glycoprotein composition of various cell types of the normal, benign and malignant gastrointestinal mucosa. While in the RCA I, UEA I, and WGA binding of normal mucus secreting cell types only quantitative differences were observed, the mucus in the surface epithelial cells of gastric mucosa and in the colonic goblet cells was characterized by the absence of PNA, Con A, and PNA, HPA binding sites, respectively. These lectins, however, showed a strong binding to the supranuclear, Golgi-region in the undifferentiated or activated forms of these cells. Even the staining intensity of the luminal membrane surfaces of the non mucinous parietal and chief cells was often stronger by PNA, HPA, and RCA I lectins than that of the mucus secretions in the highly differentiated mucus cells. These results indicate the existence of either heterogeneous glycoprotein components or mucus molecules with variations in the degree of glycosylation of their oligosaccharide chains in the different cells. The latter seems more likely since in benign and malignant alterations lectin binding sites appear in great density, which were found to be characteristic of the undifferentiated mucus cells or for the non mucinous cells of the normal gastric mucosa. Similarly in some gastric cancers which do not stain with the periodic acid-Schiff reaction at all, large amount of free or neuraminic acid substituted PNA binding sites can be detected.  相似文献   

19.
Helicobacter pylori attaches via lectins, carbohydrate binding proteins, to the carbohydrate residues of gastric mucins. Guinea-pigs are a suitable model for a H. pylori infection and thus the carbohydrate composition of normal and H. pylori infected gastric mucosa was investigated by lectin histochemistry. The stomach of all infected animals showed signs of an active chronic gastritis in their mucosa, whereas no inflammation was present in the control animals. The corpus–fundus regions of the controls showed heterogeneous WGA, SNA-I, UEA-I and HPA binding in almost all parts of the gastric glands. While these lectins labelled the superficial mucous cells and chief cells heterogeneously, the staining of the parietal cells was limited to WGA and PHA-L. Mucous neck cells reacted heterogeneously with UEA-I, HPA, WGA and PHA-L. In the antrum, the superficial mucous cells and glands were stained by WGA, UEA-I, HPA, SNA-I or PHA-L. WGA, UEA-I, SNA-I and HPA labelled the surface lining cells strongly. The mucoid glands reacted heterogeneously with WGA, UEA-I, HPA, SNA-I and PHA-L. In both regions, the H. pylori infected animals showed similar lectin binding pattern as the controls. No significant differences in the lectin binding pattern and thus in the carbohydrate composition between normal and H. pylori infected mucosa could be detected, hence H. pylori does not induce any changes in the glycosylation of the mucosa of the guinea-pig. This unaltered glycosylation is of particular relevance for the sialic acid binding lectin SNA-I as H. pylori uses sialic acid binding adhesin for its attachment to the mucosa. As sialic acid binding sites are already expressed in the normal mucosa H. pylori can immediately attach via its sialic acid binding adhesin to the mucosa making the guinea-pig particularly useful as a model organism.This work is dedicated to Professor B. Tillmann on the occasion of his 65th birthday  相似文献   

20.
Lei Zhang  Shen Luo 《MABS-AUSTIN》2016,8(3):524-535
Glycans or carbohydrates attached to therapeutic glycoproteins can directly affect product quality, safety and efficacy, and therefore must be adequately analyzed and controlled throughout product life cycles. However, the complexity of protein glycosylation poses a daunting analytical challenge. In this study, we evaluated the utility of a lectin microarray for assessing protein glycans. Using commercial lectin chips, which contain 45 lectins toward distinct glycan structures, we were able to determine the lectin binding patterns of a panel of 15 therapeutic proteins, including 8 monoclonal antibodies. Lectin binding signals were analyzed to generate glycan profiles that were generally consistent with the known glycan patterns for these glycoproteins. In particular, the lectin-based microarray was found to be highly sensitive to variations in the terminal carbohydrate structures such as galactose versus sialic acid epitopes. These data suggest that lectin microarray could be used for screening glycan patterns of therapeutic glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号