首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dendritic cells (DCs) are central players of the immune response. To date, DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients, predominantly with ex vivo-cultured monocyte-derived DCs (moDCs). However, the extensive culture period and compounds required to differentiate them into DCs may negatively affect their immunological potential. Therefore, it is attractive to consider alternative DC sources, such as blood DCs. Two major types of naturally occurring DCs circulate in peripheral blood, myeloid DCs (mDCs) and plasmacytoid (pDCs). These DC subsets express different surface molecules and are suggested to have distinct functions. Besides scavenging pathogens and presenting antigens, DCs secrete cytokines, all of which is vital for both the acquired and the innate immune system. These immunological functions relate to Toll-like receptors (TLRs) expressed by DCs. TLRs recognize pathogen-derived products and subsequently provoke DC maturation, antigen presentation and cytokine secretion. However, not every TLR is expressed on each DC subset nor causes the same effects when activated. Considering the large amount of clinical trials using DC-based immunotherapy for cancer patients and the decisive role of TLRs in DC maturation, this review summarizes TLR expression in different DC subsets in relation to their function. Emphasis will be given to the therapeutic potential of TLR-matured DC subsets for DC-based immunotherapy.  相似文献   

2.
3.
The control of dendritic cell (DC) migration is pivotal for the initiation of cellular immune responses. In this study, we demonstrate that the migration of human monocyte-derived (Mo)DCs as well as of ex vivo peripheral blood DCs toward CCL21, CXCL12, and C5a is stringently dependent on the presence of the proinflammatory mediator PGE2, although DCs expressed CXCR4 and C5aR on their surface and DC maturation was accompanied by CCR7 up-regulation independently of PGE2. The necessity of exogenous PGE2 for DC migration is not due to the suppression of PGE2 synthesis by IL-4, which is used for MoDC differentiation, because maturation-induced endogenous production of PGE2 cannot promote DC migration. Surprisingly, PGE2 was absolutely required at early time points of maturation to enable MoDC chemotaxis, whereas PGE2 addition during terminal maturation events was ineffective. In contrast to mouse DCs, which exclusively rely on EP4 receptor triggering for migration, human MoDCs require a signal mediated by EP2 or EP4 either alone or in combination. Our results provide clear evidence that PGE2 is a general and mandatory factor for the development of a migratory phenotype of human MoDCs as well as for peripheral blood myeloid DCs.  相似文献   

4.
Dendritic cells (DCs) are professional antigen-presenting cells involved in the control and initiation of immune responses. In vivo, DCs exposed at the periphery to maturation stimuli migrate to lymph nodes, where they receive secondary signals from CD4+ T helper cells. These DCs become able to initiate CD8+ cytotoxic T lymphocyte (CTL) responses. However, in vitro investigations concerning human monocyte-derived DCs have never focused on their functional properties after such sequential maturation. Here, we studied human DC phenotypes and functions according to this sequential exposure to maturation stimuli. As first signals, we used TNF-α/polyI:C mimicking inflammatory and pathogen stimuli and, as second signals, we compared activated CD4+ T helper cells to a combination of CD40-L/ IFN-γ. Our results show that a sequential activation with activated CD4+ T cells dramatically increased the maturation of DCs in terms of their phenotype and cytokine secretion compared to DCs activated with maturation stimuli delivered simultaneously. Furthermore, this sequential maturation led to the induction of CTL with a long-term effector and central memory phenotypes. Thus, sequential delivery of maturation stimuli, which includes CD4+ T cells, should be considered in the future to improve the induction of long-term CTL memory in DC-based immunotherapy.  相似文献   

5.
Dendritic cells (DCs) are professional APCs of the immune system that play a key role in regulating T cell-based immunity. The capacity of DCs to activate T cells depends on their maturation state as well as their ability to migrate to the T cell areas of draining lymph nodes. In this study, we investigated the effects of DC maturation stimuli on the actin cytoskeleton and beta(1) integrin-dependent adhesion and migration. Podosomes, specialized adhesion structures found in immature monocyte-derived DCs as well as myeloid DCs, rapidly dissolve in response to maturation stimuli such as TNF-alpha and PGE(2), whereas the TLR agonist LPS induces podosome dissolution only after a long lag time. We demonstrate that LPS-mediated podosome disassembly as well as the onset of high-speed DC migration are dependent on the production of PGs by the DCs. Moreover, both of these processes are inhibited by Ab-induced activation of beta(1) integrins. Together, these results show that maturation-induced podosome dissolution and loss of alpha(5)beta(1) integrin activity allow human DCs to undergo the transition from an adhesive to a highly migratory phenotype.  相似文献   

6.
In HIV infection, dendritic cells (DCs) may play multiple roles, probably including initial HIV uptake in the anogenital mucosa, transport to lymph nodes, and subsequent transfer to T cells. The effects of HIV-1 on DC maturation are controversial, with several recent conflicting reports in the literature. In this study, microarray studies, confirmed by real-time PCR, demonstrated that the genes encoding DC surface maturation markers were among the most differentially expressed in monocyte-derived dendritic cells (MDDCs), derived from human blood, treated with live or aldrithriol-2-inactivated HIV-1(BaL). These effects translated to enhanced cell surface expression of these proteins but differential expression of maturation markers was only partial compared with the effects of a conventional potent maturation stimulus. Such partially mature MDDCs can be converted to fully mature cells by this same potent stimulus. Furthermore, live HIV-1 stimulated greater changes in maturation marker surface expression than aldrithriol-2-inactivated HIV-1 and this enhanced stimulation by live HIV-1 was mediated via CCR5, thus suggesting both viral replication-dependent and -independent mechanisms. These partially mature MDDCs demonstrated enhanced CCR7-mediated migration and are also able to stimulate interacting T cells in a MLR, suggesting DCs harboring HIV-1 might prepare CD4 lymphocytes for transfer of HIV-1. Increased maturation marker surface expression was also demonstrated in native DCs, ex vivo Langerhans cells derived from human skin. Thus, HIV initiates maturation of DCs which could facilitate subsequent enhanced transfer to T cells.  相似文献   

7.
Dendritic cell (DC) vaccines offer a robust platform for the development of cancer vaccines, but their effectiveness is thought to be limited by T regulatory cells (Tregs). Recombinant adenoviruses (RAdV) have been used successfully to engineer tumor antigen expression in DCs, but the impact of virus transduction on susceptibility to suppression by Tregs is unknown. We investigated the functional consequences of exposure to adenovirus on interactions between human monocyte-derived DCs and Tregs. Since the development of Tregs is linked to that of pro-inflammatory Th17 cells, the role of Th17 cells and IL-17-producing Tregs in the context of DC-based immunotherapies was also investigated. We found that Tregs potently suppressed the co-stimulatory capacity of RAdV-transduced DCs, regardless of whether the DCs were maturated by inflammatory cytokines or by exposure to Th1 or Th17 cells. Furthermore, exposure of Tregs to RAdV-exposed DCs increased IL-17 production and suppressive capacity, and correlated with enhanced secretion of IL-1β and IL-6 by DCs. The findings that DCs exposed to RAdV are suppressed by Tregs, promote Treg plasticity, and enhance Treg suppression indicates that strategies to limit Tregs will be required to enhance the efficacy of such DC-based immunotherapies.  相似文献   

8.
The bacterial pathogen Helicobacter pylori colonizes the human gastric and duodenal mucosa, evades clearance by the host response and is associated with peptic ulcer disease and an increased risk of gastric adenocarcinoma. Dendritic cells (DCs) are initiators of the immune response to H. pylori. The aim of the current study was to investigate the interaction between H. pylori with DCs. To determine the impact of H. pylori on the maturation and the activation of monocyte-derived DCs, the effect of 20 clinical H. pylori strains with different inflammatory backgrounds on adenocarcinoma gastric epithelial cells was investigated. The inflammatory background was defined according to the degree of lymphocyte and granulocyte infiltration and the bacterial density at the site of infection. DC maturation and activation varied after exposure to the different strains. While maturation appeared to be independent of any virulence factor tested, a significant increase in the average level of cytokine production was observed for the proinflammatory cytokines interleukin-12 (IL-12), tumour necrosis factor-α, IL-6 and IL-1β when comparing strains with low inflammatory backgrounds with those of the medium or high backgrounds. In conclusion, the DC response towards different strains in vitro was associated with the clinical outcome of the individual host, suggesting a major role of this cell type in modulating strain-specific H. pylori infection.  相似文献   

9.
Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.  相似文献   

10.
Dendritic cells (DCs) are characterized by their unique capacity for primary T cell activation, providing the opportunity for DC-based cancer vaccination protocols. Novel findings reveal that besides their role as potent inducers of tumor-specific T cells, human DCs display additional antitumor effects. Most of these data were obtained with monocyte-derived DCs, whereas studies investigating native blood DCs are limited. In the present study, we analyze the tumoricidal capacity of M-DC8(+) DCs, which represent a major subpopulation of human blood DCs. We demonstrate that IFN-gamma-stimulated M-DC8(+) DCs lyse different tumor cell lines but not normal cells. In addition, we show that tumor cells markedly enhance the production of TNF-alpha by M-DC8(+) DCs via cell-to-cell contact and that this molecule essentially contributes to the killing activity of M-DC8(+) DCs. Furthermore, we illustrate the ability of M-DC8(+) DCs to promote proliferation, IFN-gamma production, and tumor-directed cytotoxicity of NK cells. The M-DC8(+) DC-mediated enhancement of the tumoricidal potential of NK cells is mainly dependent on cell-to-cell contact. These results reveal that, in addition to their crucial role in activating tumor-specific T cells, blood DCs exhibit direct tumor cell killing and enhance the tumoricidal activity of NK cells. These findings point to the pivotal role of DCs in triggering innate and adaptive immune responses against tumors.  相似文献   

11.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

12.
Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT), commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR) are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs). In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR1 and 5-HTR2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR3, 5-HTR4 and 5-HTR7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.  相似文献   

13.
LIGHT is a recently cloned novel cytokine belonging to the TNF family that is selectively expressed on immature dendritic cells (iDCs) generated from monocytes isolated from human PBMCs. In these studies, we demonstrate that exogenous soluble LIGHT or soluble CD40 ligand (CD40L) can promote monocyte-derived dendritic cell maturation in vitro by the up-regulation of CD86, CD80, CD83, and HLA-DR antigen expression. Immature dendritic cells differentiated from monocytes of MDS patients displayed lower levels of costimulatory and HLA-DR molecules compared with iDCs differentiated from monocytes of normal subjects. However, upon induction of maturation by LIGHT or CD40L, the expression of costimulatory and HLA-DR molecules is comparable between DCs from MDS and normal subjects. Exogenous LIGHT- and CD40L-stimulated mature DCs (mDCs) also displayed increased antigen presentation to autologous T lymphocytes (tetanus toxin) or allogeneic T lymphocytes in mixed lymphocyte reactions. DCs matured by LIGHT showed increased secretion of IL-6, IL-12p75, and TNF-, but not IL-1. We conclude that both LIGHT and CD40L are immunoregulating factors that induce monocyte-derived iDCs from MDS patients to undergo maturation resulting in increased antigen presentation and T-cell activation. Monocyte-derived DCs can be stimulated to undergo phenotypic and functional changes with LIGHT that might be applied in the development of a DC-based vaccine for MDS treatment.  相似文献   

14.

Background

Dendritic cells (DCs) are the most efficient antigen-presenting cells and act at the center of the immune system owing to their ability to control both immune tolerance and immunity. In cancer immunotherapy, DCs play a key role in the regulation of the immune response against tumors and can be generated ex vivo with different cytokine cocktails. Methods. We evaluated the feasibility of dinoprostone (PGE2) replacement with the molecular analog sulprostone, in our good manufacturing practice (GMP) protocol for the generation of DC-based cancer vaccine. We characterized the phenotype and the function of DCs matured in the presence of sulprostone as a potential substitute of dinoprostone in the pro-inflammatory maturation cocktail consisting of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6. Results. We found that sulprostone invariably reduces the recovery, but does not significantly modify the viability and the purity of DCs. The presence of sulprostone in the maturation cocktail increases the adhesion of single cells and of clusters of DCs to the flask, making them more similar to their immature counterpart in terms of adhesion and spreading proprieties. Moreover, we observed that sulprostone impairs the expression of co-stimulatory molecules and the spontaneous as well as the directed migration capacity of DCs.

Discussion

These findings underscore that the synthetic analog sulprostone strongly reduces the functional quality of DCs, thus cannot replace dinoprostone in the maturation cocktail of monocyte-derived DCs.  相似文献   

15.
We investigated the role of Toxoplasma gondii-derived heat shock protein 70 (TgHSP70) as a dendritic cell (DC) maturation-inducing molecule. TgHSP70 induced the maturation of human monocyte-derived dendritic cells as determined by increased levels of surface markers, namely, CD40, CD80, CD86, and HLA-DR. Moreover, TgHSP70 also reduced phagocytic activity and increased the allostimulatory capacity of DCs, suggesting the functional maturation of DCs by TgHSP70. Maturation of DCs by TgHSP70 also elicited a significant increase in IL-12 production in a polymyxin B-insensitive manner. TgHSP70 also stimulated extracellular signal-regulated kinase and p38 kinase pathways in DCs, and TgHSP70-induced IL-12 production was inhibited by SB203580 but not by PD98059, thus indicating the role of p38 kinase in the maturation of DCs by TgHSP70. This study demonstrates the role of TgHSP70 in the functional maturation of DCs and suggests TgHSP70 as a useful molecule for the development of a vaccine against T. gondii.  相似文献   

16.
The human pathogen Cryptococcus neoformans causes meningo-encephalitis. The polysaccharide capsule is one of the main virulence factors and consists of two distinct polysaccharides: glucuronoxylomannan and galactoxylomannan. The presence of this polysaccharide capsule was previously shown to interfere with maturation of human dendritic cells (DCs), possibly by shielding cell-wall components from interacting with these host immune cells. Here we show that two mutant strains of C. neoformans , both lacking a visible capsule due to a defect in glucuronoxylomannan synthesis, differentially activate human monocyte-derived DCs. Cells from a cap59 mutant, but not of a cap10 mutant strain, induce maturation of DCs as indicated by an increase in the expression of the costimulatory molecules CD80 and CD86, and production of the cytokines interleukin (IL)-10, IL-12p40 and tumor necrosis factor α. Interestingly, cap59 mutant cells reassociated with a concentrated culture medium of wild-type C. neoformans had lost their capacity to induce DC maturation. Summarizing, our data suggest that glucuronoxylomannan confers properties to the capsule that protect the fungus against activation of DCs; however, the presence of intact glucuronoxylomannan is not an absolute requirement to prevent activation of DCs.  相似文献   

17.
Dendritic cells (DCs), a critical component of innate immunity, are the most potent APCs. When DCs mature, they can elicit strong T cell responses. We studied the kinetics of Ag-induced phenotypic and functional maturation of human monocyte-derived DCs using an in vitro T cell-independent culture system. With this model, we herein show that an Ag that has recently or repetitively been exposed ("exposed Ag") rapidly induces a high level of maturation; however, an Ag that has never or only remotely been exposed ("unexposed Ag") slowly induces a low level of maturation. The kinetics of Ag-induced maturation of DCs possibly implies a novel mechanism for immunological memory that would provide maximal host protection from repetitively invading pathogens in the environment.  相似文献   

18.
《Cytotherapy》2014,16(6):826-834
Background aimsEx vivo–generated monocyte-derived dendritic cells (DCs) matured with monophosphoryl lipid A (MPLA) and interferon-γ (IFN-γ) can be used as cancer immunotherapy. MPLA/IFN-γ DCs induce Th1 T cell responses and have migratory capacity. Different culture regimens have been used for generation of immunotherapeutic DCs, with varying results. In the present study, culture conditions for MPLA/IFN-γ–matured type I DCs were optimized for clinical application.MethodsDCs were generated from monocytes in the clinical grade culture media CellGro DC, AIM V or X-VIVO 15 in the absence or presence of 2% human serum (HS) and matured with the use of MPLA/IFN-γ. DC yield and DC functionality were assessed. DC functionality was determined by means of analysis of cytokines in culture supernatant, migratory capacity, expression of co-stimulatory molecules, T cell stimulatory capacity of DCs and T helper cell (Th) polarization by the DCs.ResultsDCs generated in the presence of 2% HS produced low amounts of pro-inflammatory cytokines and could not migrate irrespective of the medium used. In the absence of HS, MPLA/IFN-γ DCs generated in X-VIVO did not migrate either. MPLA/IFN-γ DCs generated in AIM V have slightly lower capacity to induce Th1 cells than do DCs generated in CellGro or X-VIVO.ConclusionsAddition of HS to different GMP culture media is detrimental for pro-inflammatory DC maturation and migration. In the absence of serum, CellGro is the most optimal medium tested for generation of migratory and Th1-inducing MPLA/IFN-γ DCs for cancer immunotherapy.  相似文献   

19.

Background

Dendritic cells (DCs) play a pivotal role in the immune system. There are many reports concerning DC-based immunotherapy. The differentiation and maturation of DCs is a critical part of DC-based immunotherapy. We investigated the differentiation and maturation of DCs in response to various stimuli.

Methods

Thirty-one patients with malignant bone and soft tissue tumors were enrolled in this study. All the patients had metastatic tumors and/or recurrent tumors. Peripheral blood mononuclear cells (PBMCs) were suspended in media containing interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF). These cells were then treated with or without 1) tumor lysate (TL), 2) TL + TNF-α, 3) OK-432. The generated DCs were mixed and injected in the inguinal or axillary region. Treatment courses were performed every week and repeated 6 times. A portion of the cells were analyzed by flow cytometry to determine the degree of differentiation and maturation of the DCs. Serum IFN-γ and serum IL-12 were measured in order to determine the immune response following the DC-based immunotherapy.

Results

Approximately 50% of PBMCs differentiated into DCs. Maturation of the lysate-pulsed DCs was slightly increased. Maturation of the TL/TNF-α-pulsed DCs was increased, commensurate with OK-432-pulsed DCs. Serum IFN-γ and serum IL-12 showed significant elevation at one and three months after DC-based immunotherapy.

Conclusions

Although TL-pulsed DCs exhibit tumor specific immunity, TL-pulsed cells showed low levels of maturation. Conversely, the TL/TNF-α-pulsed DCs showed remarkable maturation. The combination of IL-4/GM-CSF/TL/TNF-α resulted in the greatest differentiation and maturation for DC-based immunotherapy for patients with bone and soft tissue tumors.  相似文献   

20.
We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号