首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
L McCarter  M Hilmen  M Silverman 《Cell》1988,54(3):345-351
  相似文献   

3.
Vibrio parahaemolyticus is a ubiquitous marine bacterium and human pathogen. The organism possesses multiple cell types appropriate for life under different circumstances. The swimmer cell, with a single polar flagellum, is adapted to life in liquid environments. The polar flagellum is powered by the sodium motive force and can propel the bacterium at fast speeds. The swarmer cell, propelled by many proton-powered lateral flagella, can move through highly viscous environments, colonize surfaces, and form multicellular communities which sometimes display highly periodic architecture. Signals that induce differentiation to the surface-adapted cell type are both physical and chemical in nature. Surface-induced gene expression may aid survival, whether attached to inanimate surfaces or in a host organism. Genetic rearrangements create additional phenotypic versatility, which is manifested as variable opaque and translucent colony morphotypes. Discovery that a LuxR homolog controls the opaque cell type implicates intercellular signaling as an additional survival strategy. The alternating identities of V. parahaemolyticus may play important roles in attachment and detachment, how bacterial populations adapt to growth on surfaces, form structured communities, and develop biofilms.  相似文献   

4.
We have identified mutations in three pleiotropic genes, pleA, pleC, and pleD, that are required for differentiation in Caulobacter crescentus. pleA and pleC mutants were isolated in an extensive screen for strains defective in both motility and adsorption of polar bacteriophage phi CbK; using temperature-sensitive alleles, we determined the time at which the two genes act. pleA was required for a short period at 0.7 of the swarmer cell cycle for flagellum biosynthesis, whereas pleC was required during an overlapping period from 0.6 to 0.95 of the cell cycle to activate flagellum rotation as well as to enable loss of the flagellum and stalk formation by swarmer cells after division. The third pleiotropic gene, pleD, is described here for the first time. A pleD mutation was identified as a bypass suppressor of a temperature-sensitive pleC allele. Strains containing this mutation were highly motile, did not shed the flagellum or form stalks, and retained motility throughout the cell cycle. Since pleD was required to turn off motility and was a bypass suppressor of pleC, we conclude that it acts after the pleA and pleC gene functions in the cell cycle. No mutants defective in both flagellum biosynthesis and stalk formation were identified. Consequently, we propose that the steps required for formation of swarmer cells and subsequent development into stalked cells are organized into at least two developmental pathways: a pleA-dependent sequence of events, responsible for flagellum biosynthesis in predivisional cells, and a pleC-pleD-dependent sequence, responsible for flagellum activation in predivisional cells and loss of motility and stalk formation in progeny swarmer cells.  相似文献   

5.
Levi A  Jenal U 《Journal of bacteriology》2006,188(14):5315-5318
The adhesive holdfast is required for irreversible surface anchoring of Caulobacter crescentus cells. The holdfast is synthesized early during swarmer cell development and, together with pili and a functional flagellum, contributes to optimal attachment during cell differentiation. We present evidence that the timing of holdfast formation in swarmer cells is regulated posttranslationally and is dependent on the diguanylate cyclase PleD.  相似文献   

6.
Asymmetric cell division in Caulobacter crescentus produces two cell types, a stalked cell and a new swarmer cell, with characteristics surface structures. We have examined the role of the cell cycle in the differentiation of these two cells using the adsorption of bacteriophage øLC72, the assembly of the polar flagellum, and stalk formation as assays for changes in surface morphology. Previous studies of this aquatic bacterium [17, 25] have suggested that the replicating chromosome acts as a 'clock' in timing the formation of the flagellar filament at one pole of the new swarmer cell. The analysis of conditional cell cycle mutants presented here extends these results by showing that DNA synthesis is also required for adsorption of phage øLC72 and, more importantly, they also suggest that a late cell division step is involved in determining the spatial pattern in which the phage receptors and flagella are assembled. We propose that this cell division step is required for formation of 'organizational' centers which direct the assembly of surface structures at the new cell poles, and for the polarity reversal in assembly that accompanies swarmer cell to stalked cell development.  相似文献   

7.
The methyl-accepting chemotaxis proteins (MCPs) are membrane receptors that initiate signal transduction to the flagellar rotor upon ligand binding. The synthesis of these proteins occurs only in the Caulobacter crescentus predivisional cell coincident with the biosynthesis of the polar flagellum. Both the flagellum and the MCPs are partitioned to only one daughter cell, the swarmer cell, upon division. We report the results of experiments designed to determine the distribution of these MCPs within swarmer cells and predivisional cells. Flagellated and non-flagellated vesicles were prepared from these cells by immunoaffinity chromatography and the level of MCPs that had been labeled either in vivo or in vitro with methyl-3H was determined. Small membrane vesicles from swarmer cells contained [methyl-3H]MCPs both in the flagellated and non-flagellated vesicles, which indicates that the region immediately surrounding the flagellum, as well as the rest of the surface of the swarmer cell, contains [methyl-3H]MCP. Thus, the MCPs are not specifically localized to the immediate vicinity of the flagellar rotor. The distribution of MCPs was examined in flagellated and non-flagellated vesicles isolated from predivisional cells. The analysis of small predivisional vesicles showed that the MCP content is higher in the flagellated vesicles, and analysis of large flagellated vesicles showed that the MCPs are positioned preferentially in the swarmer cell portion of the predivisional cell. This positional bias of MCPs within predivisional cells could reflect either a large compartment or membrane domain within the incipient swarmer cell, or a gradient of MCPs, with the highest concentration in the vicinity of the flagellum.  相似文献   

8.
Pili, along with the flagellum and DNA bacteriophage receptors, are structural markers for polar morphogenesis in Caulobacter crescentus. Pili act as primary receptors for a number of small, C. crescentus-specific DNA and RNA bacteriophages, and the timing of pilus-dependent adsorption of bacteriophage phiCb5 in synchronized cell populations has led to the general conclusion that pili are formed coordinately with the flagellum and other polar surface structures in the predivisional cell. The use of rotary platinum shadow casting and electron microscopy as a direct assay for formation of flagella and pili in synchronous cell cultures now shows, however, that when expressed as fractions of the swarmer cell cycle, flagella are assembled on the predivisional cells at approximately 0.8 and that pili are assembled on the new swarmer cells at approximately 0.1 of the next cell cycle. Adsorption of pilus-specific bacteriophage phiCb5 prevented the loss of pili from swarmer cells during development, which suggests that these structures are retracted at the time of stalk formation. Examination of temperature-sensitive cell division mutants showed that the assembly of pili depends on completion of cell separation. These results indicate that the stage-specific events required for polar morphogenesis in C. crescentus occur sequentially, rather than coordinately in the cell cycle, and that the timing of these events reflects the order of underlying cell cycle steps.  相似文献   

9.
Caulobacter crescentus is an oligotrophic alpha-proteobacterium with a complex cell cycle involving sessile-stalked and piliated, flagellated swarmer cells. Because the natural lifestyle of C. crescentus intrinsically involves a surface-associated, sessile state, we investigated the dynamics and control of C. crescentus biofilms developing on glass surfaces in a hydrodynamic system. In contrast to biofilms of the well-studied Pseudomonas aeruginosa, Escherichia coli, and Vibrio cholerae, C. crescentus CB15 cells form biphasic biofilms, consisting predominantly of a cell monolayer biofilm and a biofilm containing densely packed, mushroom-shaped structures. Based on comparisons between the C. crescentus strain CB15 wild type and its holdfast (hfsA; DeltaCC0095), pili (DeltapilA-cpaF::Omegaaac3), motility (motA), flagellum (flgH) mutants, and a double mutant lacking holdfast and flagellum (hfsA; flgH), a model for biofilm formation in C. crescentus is proposed. For both biofilm forms, the holdfast structure at the tip of a stalked cell is crucial for mediating the initial attachment. Swimming motility by means of the single polar flagellum enhances initial attachment and enables progeny swarmer cells to escape from the monolayer biofilm. The flagellum structure also contributes to maintaining the mushroom structure. Type IV pili enhance but are not absolutely required for the initial adhesion phase. However, pili are essential for forming and maintaining the well-defined three-dimensional mushroom-shaped biofilm. The involvement of pili in mushroom architecture is a novel function for type IV pili in C. crescentus. These unique biofilm features demonstrate a spatial diversification of the C. crescentus population into a sessile, "stem cell"-like subpopulation (monolayer biofilm), which generates progeny cells capable of exploring the aqueous, oligotrophic environment by swimming motility and a subpopulation accumulating in large mushroom structures.  相似文献   

10.
11.
12.
The poles of each Caulobacter crescentus cell undergo morphological development as a function of the cell cycle. A single flagellum assembled at one pole during the asymmetric cell division is later ejected and replaced by a newly synthesized stalk when the motile swarmer progeny differentiates into a sessile stalked cell. The removal of the flagellum during the swarmer-to-stalked cell transition coincides with the degradation of the FliF flagellar anchor protein. We report here that the cell cycle-dependent turnover of FliF does not require the structural components of the flagellum itself, arguing that it is the initial event leading to the ejection of the flagellum. Analysis of a polar development mutant, pleD, revealed that the pleD gene was required for efficient removal of FliF and for ejection of the flagellar structure during the swarmer-to-stalked cell transition. The PleD requirement for FliF degradation was also not dependent on the presence of any part of the flagellar structure. In addition, only 25% of the cells were able to synthesize a stalk during cell differentiation when PleD was absent. The pleD gene codes for a member of the response regulator family with a novel C-terminal regulatory domain. Mutational analysis confirmed that a highly conserved motif in the PleD C-terminal domain is essential to promote both FliF degradation and stalk biogenesis during cell differentiation. Signalling through the C-terminal domain of PleD is thus required for C. crescentus polar development. A second gene, fliL, was shown to be required for efficient turnover of FliF, but not for stalk biogenesis. The possible roles of PleD and FliL in C. crescentus polar development are discussed.  相似文献   

13.
Cell cycle arrest of a Caulobacter crescentus secA mutant.   总被引:2,自引:1,他引:1       下载免费PDF全文
Cell differentiation is an inherent component of the Caulobacter crescentus cell cycle. The transition of a swarmer cell, with a single polar flagellum, into a sessile stalked cell includes several morphogenetic events. These include the release of the flagellum and pili, the proteolysis of chemotaxis proteins, the biogenesis of the polar stalk, and the initiation of DNA replication. We have isolated a group of temperature-sensitive mutants that are unable to complete this process at the restrictive temperature. We show here that one of these strains has a mutation in a homolog of the Escherichia coli secA gene, whose product is involved in protein translocation at the cell membrane. This C. crescentus secA mutant has allowed the identification of morphogenetic events in the swarmer-to-stalked cell transition that require SecA-dependent protein translocation. Upon shift to the nonpermissive temperature, the mutant secA swarmer cell is able to release the polar flagellum, degrade chemoreceptors, and initiate DNA replication, but it is unable to form a stalk, complete DNA replication, or carry out cell division. At the nonpermissive temperature, the cell cycle blocks prior to the de novo synthesis of flagella and chemotaxis proteins that normally occurs in the predivisional cell. Although interactions between the chromosome and the cytoplasmic membrane are believed to be a functional component of the temporal regulation of DNA replication, the ability of this secA mutant to initiate replication at the nonpermissive temperature suggests that SecA-dependent events are not involved in this process. However, both cell division and stalk formation, which is analogous to a polar division event, require SecA function.  相似文献   

14.
Cell cycle progression and polar differentiation are temporally coordinated in Caulobacter crescentus. This oligotrophic bacterium divides asymmetrically to produce a motile swarmer cell that represses DNA replication and a sessile stalked cell that replicates its DNA. The initiation of DNA replication coincides with the proteolysis of the CtrA replication inhibitor and the accumulation of DnaA, the replication initiator, upon differentiation of the swarmer cell into a stalked cell. We analyzed the adaptive response of C. crescentus swarmer cells to carbon starvation and found that there was a block in both the swarmer-to-stalked cell polar differentiation program and the initiation of DNA replication. SpoT is a bifunctional synthase/hydrolase that controls the steady-state level of the stress-signaling nucleotide (p)ppGpp, and carbon starvation caused a SpoT-dependent increase in (p)ppGpp concentration. Carbon starvation activates DnaA proteolysis (B. Gorbatyuk and G. T. Marczynski, Mol. Microbiol. 55:1233-1245, 2005). We observed that SpoT is required for this phenomenon in swarmer cells, and in the absence of SpoT, carbon-starved swarmer cells inappropriately initiated DNA replication. Since SpoT controls (p)ppGpp abundance, we propose that this nucleotide relays carbon starvation signals to the cellular factors responsible for activating DnaA proteolysis, thereby inhibiting the initiation of DNA replication. SpoT, however, was not required for the carbon starvation block of the swarmer-to-stalked cell polar differentiation program. Thus, swarmer cells utilize at least two independent signaling pathways to relay carbon starvation signals: a SpoT-dependent pathway mediating the inhibition of DNA replication initiation, and a SpoT-independent pathway(s) that blocks morphological differentiation.  相似文献   

15.
Regulation of polar development and cell division in Caulobacter crescentus relies on the dynamic localization of several proteins to cell poles at specific stages of the cell cycle. The polar organelle development protein, PodJ, is required for the synthesis of the adhesive holdfast and pili. Here we show the cell cycle localization of PodJ and describe a novel role for this protein in controlling the dynamic localization of the developmental regulator PleC. In swarmer cells, a short form of PodJ is localized at the flagellated pole. Upon differentiation of the swarmer cell into a stalked cell, full length PodJ is synthesized and localizes to the pole opposite the stalk. In late predivisional cells, full length PodJ is processed into a short form which remains localized at the flagellar pole after cell division and is degraded during swarmer to stalked cell differentiation. Polar localization of the developmental regulator PleC requires the presence of PodJ. In contrast, the polar localization of PodJ is not dependent on the presence of PleC. These results indicate that PodJ is an important determinant for the localization of a major regulator of cell differentiation. Thus, PodJ acts directly or indirectly to target PleC to the incipient swarmer pole, to establish the cellular asymmetry that leads to the synthesis of holdfasts and pili at their proper subcellular location.  相似文献   

16.
We describe a new sensory response in the enteric bacterium Serratia marcescens. When grown in liquid media, the bacteria were short rods with one to two flagella and displayed classical swimming behavior. Upon transfer to a solid surface (0.7 to 0.8T% agar medium), the bacteria underwent a dramatic change of form. They ceased septation, elongated, and expressed numerous (10 to 100) flagella that covered the lateral sides of the cells. The bacteria now displayed a different form of locomotion--swarming--which allowed them to rapidly move over the top of the solid surface. The differentiation to either swimmer or swarmer cells could be reversed by growth on solid or liquid medium, respectively. To identify conditions that influence this differentiation, the growth environment of S. marcescens was manipulated extensively. The swarming response was monitored by visual and microscopic observation of cell movement on solid surfaces, by immunofluorescent labeling followed by microscopic observation for the presence of elongated, profusely flagellated cells, as well as by estimation of induction of flagellin protein, using Western immunoblot analysis. Conditions that imposed a physical constraint on bacterial movement, such as solid or viscous media, were the most efficient at inducing the swarming response. No chemical constituent of the medium that might contribute to the response could be identified, although the existence of such a component cannot be ruled out. Both swimmer and swarmer cells had flagellin proteins of identical molecular weight, which produced similar proteolysis patterns upon digestion with trypsin.  相似文献   

17.
During swarmer cell differentiation in Caulobacter crescentus, morphogenesis at the swarmer pole is characterized by the loss of the flagellum, by the loss of phage receptor activity (PRA) (the ability of the cell to adsorb phage phi CbK), and finally by the initiation of stalk outgrowth at the site formerly occupied by the flagellum and the PRA. We show here that each of these events is a cell cycle-dependent event requiring continuous protein synthesis for its execution but occurring normally in the absence of DNA synthesis or phospholipid synthesis. During stalked-cell differentiation, the flagellum and PRA reappear and the stalk elongates considerably. We show here that these events are also cell cycle dependent, requiring not only de novo protein synthesis but also DNA and phospholipid syntheses. When synchronous cells dividing 160 min after collection were used, PRA reappearance occurred at 110 min. This PRA reappearance was dependent on a phospholipid synthesis-requiring event occurring at 70 min, a DNA synthesis-requiring event occurring at 95 min, and a protein synthesis-requiring event occurring at 108 min. In the absence of net phospholipid synthesis, stalk elongation appeared more or less normal, but the stalks eventually became fragile, and by 240 min, most of the stalks had broken off, leaving only stubs attached to the cell body.  相似文献   

18.
The effect of compounds on the motility of Proteus mirabilis swarmer cells varies from one strain to another. The effect of compounds on the motility of swarmer cells is mainly at higher concentrations than the concentration used to inhibit swarming. Boric acid only affects the motility of strain G9 swarmer cells, whereas sodium deoxycholate prevented the motility of swarmer cells for three strains. Some antibiotics show their effect on the motility of swarmer cells in anaerobic areas, by slowing the movement of swarmer cells, followed by stopping the movement after a period of time or disappearance of the cells. The differentiation between the strains of Proteus species seems to be better in liquid suspension than on the solid medium.  相似文献   

19.
Proteus mirabilis is a urinary tract pathogen that differentiates from a short swimmer cell to an elongated, highly flagellated swarmer cell. Swarmer cell differentiation parallels an increased expression of several virulence factors, suggesting that both processes are controlled by the same signal. The molecular nature of this signal is not known but is hypothesized to involve the inhibition of flagellar rotation. In this study, data are presented supporting the idea that conditions inhibiting flagellar rotation induce swarmer cell differentiation and implicating a rotating flagellar filament as critical to the sensing mechanism. Mutations in three genes, fliL, fliF, and fliG, encoding components of the flagellar basal body, result in the inappropriate development of swarmer cells in noninducing liquid media or hyperelongated swarmer cells on agar media. The fliL mutation was studied in detail. FliL- mutants are nonmotile and fail to synthesize flagellin, while complementation of fliL restores wild-type cell elongation but not motility. Overexpression of fliL+ in wild-type cells prevents swarmer cell differentiation and motility, a result also observed when P. mirabilis fliL+ was expressed in Escherichia coli. These results suggest that FliL plays a role in swarmer cell differentiation and implicate FliL as critical to transduction of the signal inducing swarmer cell differentiation and virulence gene expression. In concert with this idea, defects in fliL up-regulate the expression of two virulence genes, zapA and hpmB. These results support the hypothesis that P. mirabilis ascertains its location in the environment or host by assessing the status of its flagellar motors, which in turn control swarmer cell gene expression.  相似文献   

20.
Under the appropriate environmental conditions, the gram-negative bacterium Proteus mirabilis undergoes a remarkable differentiation to form a distinct cell type called a swarmer cell. The swarmer cell is characterized by a 20- to 40-fold increase in both cell length and the number of flagella per cell. Environmental conditions required for swarmer cell differentiation include: surface contact, inhibition of flagellar rotation, a sufficient cell density and cell-to-cell signalling. The differentiated swarmer cell is then able to carry out a highly ordered population migration termed swarming. Genetic analysis of the swarming process has revealed that a large variety of distinct loci are required for this differentiation including: genes involved in regulation, lipopolysaccharide and peptidoglycan synthesis, cell division, ATP production, putrescine biosynthesis, proteolysis and cell shape determination. The process of swarming is important medically because the expression of virulence genes and the ability to invade cells are coupled to the differentiated swarmer cell. In this review, the genetic and environmental requirements for swarmer cell differentiation will be outlined. In addition, the role of the differentiated swarmer cell in virulence and its possible role in biofilm formation will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号