首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes of 42K efflux (J23K) caused by ouabain and/or furosemide were measured in isolated epithelia of frog skin. From the kinetics of 42K influx (J32K) studied first over 8-9 h, K+ appeared to be distributed into readily and poorly exchangeable cellular pools of K+. The readily exchangeable pool of K+ was increased by amiloride and decreased by ouabain and/or K+-free extracellular Ringer solution. 42K efflux studies were carried out with tissues shortcircuited in chambers. Ouabain caused an immediate (less than 1 min) increase of the 42K efflux to approximately 174% of control in tissues incubated either in SO4-Ringer solution or in Cl-Ringer solution containing furosemide. Whereas furosemide had no effect on J23K in control tissues bathed in Cl-rich or Cl-free solutions, ouabain induced a furosemide-inhibitable and time-dependent increase of a neutral Cl-dependent component of the J23K. Electroconductive K+ transport occurred via a single-filing K+ channel with an n' of 2.9 K+ efflux before ouabain, normalized to post-ouabain (+/- furosemide) values of short-circuit current, averaged 8-10 microA/cm2. In agreement with the conclusions of the preceding article, the macroscopic stoichiometry of ouabain-inhibitable Na+/K+ exchange by the pump was variable, ranging between 1.7 and 7.2. With increasing rates of transepithelial Na+ transport, pump-mediated K+ influx saturated, whereas Na+ efflux continued to increase with increases of pump current. In the usual range of transepithelial Na+ transport, regulation of Na+ transport occurs via changes of pump-mediated Na+ efflux, with no obligatory coupling to pump-mediated K+ influx.  相似文献   

2.
The stoichiometry of pump-mediated Na/K exchange was studied in isolated epithelial sheets of frog skin. 42K influx across basolateral membranes was measured with tissues in a steady state and incubated in either beakers or in chambers. The short-circuit current provided estimates of Na+ influx at the apical membranes of the cells. 42K influx of tissues bathed in Cl- or SO4-Ringer solution averaged approximately 8 microA/cm2. Ouabain inhibited 94% of the 42K influx. Furosemide was without effect on pre-ouabain-treated tissues but inhibited a ouabain-induced and Cl--dependent component of 42K influx. After taking into account the contribution of the Na+ load to the pump by way of basolateral membrane recycling of Na+, the stoichiometry was found to increase from approximately 2 to 6 as the pump-mediated Na+ transport rate increased from 10 to 70 microA/cm2. Extrapolation of the data to low rates of Na+ transport (less than 10 microA/cm2) indicated that the stoichiometry would be in the vicinity of 3:2. As pump-mediated K+ influx saturates with increasing rates of Na+ transport, Na+ efflux cannot be obligatorily coupled to K+ influx at all rates of transepithelial Na+ transport. These results are similar to those of Mullins and Brinley (1969. Journal of General Physiology. 53:504-740) in studies of the squid axon.  相似文献   

3.
Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
The properties of the rectal gland (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonoether ( C12E8 ) have been investigated. The kinetic properties of the solubilized enzyme resemble those of the membrane-bound enzyme to a large extent. The main difference is that Km for ATP for the (Na+ + K+)-ATPase is about 30 microM for the solubilized enzyme and about 100 microM for the membrane-bound enzyme. The Na+-form (E1) and the K+-form (E2) can also be distinguished in the solubilized enzyme, as seen from tryptic digestion, the intrinsic fluorescence and eosin fluorescence responses to Na+ and K+. The number of vanadate-binding sites is unchanged upon solubilization, and it is shown that vanadate binding is much more resistant to detergent inactivation than the enzymatic activities. The number of phosphorylation sites on the 95-100% pure supernatant enzyme is about 3.8 nmol/mg, and is equal to the number of vanadate sites. Inactivation of the enzyme by high concentrations of detergent can be shown to be related to the C12E8 /protein ratio, with a weight ratio of about 4 being a threshold for the onset of inactivation at low ionic strength. At high ionic strength, more C12E8 is required both for solubilization and inactivation. It is observed that the commercially available detergent polyoxyethylene 10-lauryl ether is much less deleterious than C12E8 , and its advantages in the assay of detergent-solubilized (Na+ + K+)-ATPase are discussed. The results show that (Na+ + K+)-ATPase can be solubilized in C12E8 in an active form, and that most of the kinetic and conformational properties of the membrane-bound enzyme are conserved upon solubilization. C12E8 -solubilized (Na+ + K+)-ATPase is therefore a good model system for a solubilized membrane protein.  相似文献   

4.
Na+ efflux across basolateral membranes of isolated epithelia of frog skin was tested for voltage sensitivity. The intracellular Na+ transport pool was loaded with 24Na from the apical solution and the rate of isotope appearance in the basolateral solution (JNa23) was measured at timed intervals of 30 s. Basolateral membrane voltage was depolarized by either 50 mM K+, 5 mM Ba++, or 80 mM NH+4. Whereas within 30 s ouabain caused inhibition of JNa23, depolarization of Vb by 30-60 mV caused no significant change of JNa23. Thus, both pump-mediated and leak Na+ effluxes were voltage independent. Although the pumps are electrogenic, pump-mediated Na+ efflux is voltage independent, perhaps because of a nonlinear relationship between pump current and transmembrane voltage. Voltage independence of the leak Na+ efflux confirms a previous suggestion (Cox and Helman, 1983. American Journal of Physiology. 245:F312-F321) that basolateral membrane Na+ leak fluxes are electroneutral.  相似文献   

5.
6.
It is thought that Na+ and K+ homeostasis is crucial for salt-tolerance in plants. To better understand the Na+ and K+ homeostasis in important crop rice (Oryza sativa L.), a cDNA homologous to the wheat HKT1 encoding K+-Na+ symporter was isolated from japonica rice, cv Nipponbare (Ni-OsHKT1). We also isolated two cDNAs homologous to Ni-OsHKT1 from salt-tolerant indica rice, cv Pokkali (Po-OsHKT1, Po-OsHKT2). The predicted amino acid sequence of Ni-OsHKT1 shares 100% identity with Po-OsHKT1 and 91% identity with Po-OsHKT2, and they are 66-67% identical to wheat HKT1. Low-K+ conditions (less than 3 mM) induced the expression of all three OsHKT genes in roots, but mRNA accumulation was inhibited by the presence of 30 mM Na+. We further characterized the ion-transport properties of OsHKT1 and OsHKT2 using an expression system in the heterologous cells, yeast and Xenopus oocytes. OsHKT2 was capable of completely rescuing a K+-uptake deficiency mutation in yeast, whereas OsHKT1 was not under K+-limiting conditions. When OsHKTs were expressed in Na+-sensitive yeast, OsHKT1 rendered the cells more Na+-sensitive than did OsHKT2 in high NaCl conditions. The electrophysiological experiments for OsHKT1 expressed in Xenopus oocytes revealed that external Na+, but not K+, shifted the reversal potential toward depolarization. In contrast, for OsHKT2 either Na+ or K+ in the external solution shifted the reversal potential toward depolarization under the mixed Na+ and K+ containing solutions. These results suggest that two isoforms of HKT transporters, a Na+ transporter (OsHKT1) and a Na+- and K+-coupled transporter (OsHKT2), may act harmoniously in the salt tolerant indica rice.  相似文献   

7.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

8.
9.
10.
Na+ and K+ transport in excised soybean roots   总被引:1,自引:0,他引:1  
Uptake, accumulation and xylem transport of K+ and Na+ in excised roots of soybean were investigated by use of a perfusion technique. This technique permitted independent quantification of, on the one hand, entry of ions into the roots and their transport through the cortex to the xylem vessels, and on the other hand reabsorption from the xylem vessels to the neighbouring cells and the external medium. Data are consistent with a low degree of selective uptake of K+ over Na+. However, Na+ depletion of the xylem stream by reabsorption limits, although weakly, its translocation to the shoots. Na+ reabsorbed is for a great part reexcreted into the external medium. The low efficiency of these processes is discussed in relation to the Na+ sensitivity of soybean.  相似文献   

11.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

12.
13.
14.
The (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from canine kidney reconstituted into phospholipid vesicles showed an ATP-dependent, ouabain-inhibited uptake of 22Na+ in the absence of added K+. This transport occurred against a Na+ concentration gradient, was not affected by increasing the K+ concentration to 10 microM (four times the endogenous level), and could not be explained in terms of Na+in in equilibrium Na+out exchange. K+-independent transport occurred with a stoichiometry of 0.5 mol of Na+ per mol of ATP hydrolyzed as compared with 2.9 mol of Na+ per mol of ATP for K+-dependent transport.  相似文献   

15.
The relationship between cation transport and cell volume in human erythrocytes was investigated by measuring ouabain-sensitive K+ influx, ouabain-resistant, furosemide-sensitive K+ influx, and ouabain + furosemide-resistant K+ influx, and maximal ouabain binding in microcytic, normocytic and macrocytic red cells. A significant correlation was found between the mean corpuscular volume and furosemide-sensitive K+ influx normalized either to cell number (r = 0.636, P < 0.001) or to cell volume (r = 0.488, P < 0.001). No relationship was seen between mean corpuscular volume and ouabain-sensitive K+ influx, and the number of ouabain-binding sites per cell was only weakly correlated with mean corpuscular volume (r = 0.337, P < 0.05). A slight, negative relationship existed between mean corpuscular volume and ouabain + furosemide-resistant K+ influx expressed per volume of cells (r = −0.359, P < 0.01), and an apparent relationship between furosemide-sensitive K+ influx and mean corpuscular hemoglobin concentration (r = 0.446, P < 0.01) disappeared when microcytic samples were excluded from analysis. Furosemide-sensitive transport, including Na+ influx and K+ and Na+ efflux, was completely absent in microcytic cells from one patient with α-thalassemia minor. In addition, these cells exhibited a furosemide-resistant, Cl-dependent K+ influx. Exposure of normal erythrocytes to hypotonic conditions (196 mosM) increased furosemide-sensitive K+ influx by a mean of 45% (P < 0.05), while exposure to hypertonic conditions (386 mosM) had no significant effect. The results indicate that furosemide-sensitive transport and cell volume are interrelated in human erythrocytes. However, the inability to fully recreate this relationship with in vitro manipulation of cell volume suggests that this relationship is established prior to red cell maturation.  相似文献   

16.
17.
18.
19.
20.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号