首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 50% of Semliki Forest virus-specific nonstructural protein nsP2 is associated with the nuclear fraction in virus-infected BHK cells. Transport into the nucleus must be specific, since only trace amounts of nsP3 and nsP4 and about 13% of nsP1, all derived from the same polyprotein, were found in the nucleus. Subfractionation of [35S]methionine-labeled Semliki Forest virus-infected cells showed that 80 to 90% of the nuclear nsP2 was associated with the nuclear matrix. Indirect immunofluorescence, with anti-nsP2 antiserum, showed the most intensive staining of structures which by Nomarski optics appeared to be nucleoli. In the presence of 1 to 5 micrograms of dactinomycin per ml the nuclei were stained evenly and no nucleoli could be found. Transport of nsP2 into the nucleus occurred early in infection and was fairly rapid. A cDNA encoding the complete nsP2 was isolated by the polymerase chain reaction technique and ligated into a simian virus 40 expression vector derivative. When BHK cells were transfected with this pSV-NS2 vector by the lipofection procedure, nsP2 was expressed in about 1 to 5% of the cells, as shown by indirect immunofluorescence. In positively transfected cells the immunofluorescence stain was most intensive in the nucleoli. Thus, Semliki Forest virus-specific nsP2 must have information which directs it into the nuclear matrix and, more specifically, into the nucleoli.  相似文献   

2.
The replication of Semliki Forest virus requires four nonstructural proteins (nsP1 to nsP4), all derived from the same polyprotein. One of these, nsP2, is a multifunctional protein needed in RNA replication and in the processing of the nonstructural polyprotein. On the basis of amino acid sequence homologies, nsP2 was predicted to possess nucleoside triphosphatase and RNA helicase activities. Here, we report the engineered expression in Escherichia coli of nsP2 and of an amino-terminal fragment of it by use of the highly efficient T7 expression system. Both polypeptides were produced as fusion proteins with a histidine tag at the amino terminus and purified by immobilized-metal affinity chromatography. The two recombinant proteins exhibited ATPase and GTPase activities, which were further stimulated by the presence of single-stranded RNA. The activities were not found in similarly prepared fractions from uninduced control cells or cells expressing an unrelated polypeptide. Radiolabeled ribonucleoside triphosphates could be cross-linked to both the full-length and the carboxy-terminally truncated nsP2 protein, and both polypeptides had RNA-binding capacity. We also expressed and purified an nsP2 variant which had a single amino acid substitution in the nucleotide-binding motif (Lys-192-->Asn). No nucleoside triphosphatase activity was associated with this mutant protein.  相似文献   

3.
HeLa cells infected with Semliki Forest virus were exposed to [35S]methionine for 1 min and chased for various periods. The analysis of labeled ribonucleoproteins showed that the viral capsid protein associated first with the large ribosomal subunit in polysomes, from which it was chased to assembling nucleocapsids and to free monosomes.  相似文献   

4.
5.
The nucleotide sequence coding for the nonstructural proteins of Semliki Forest virus has been determined from cDNA clones. The total length of this region is 7381 nucleotides, it contains an open reading frame starting at position 86 and ending at an UAA stop codon at position 7379-7381. This open reading frame codes for a 2431 amino acids long polyprotein, from which the individual nonstructural proteins are formed by proteolytic processing steps, so that nsPl is 537, nsP2 798, nsP3 482 and nsP4 614 amino acids. In the closely related Sindbis and Middelburg viruses there is an opal stop codon (UGA) between the genes for nsP3 and nsP4. Interestingly, no stop codon is found in frame in this region of the Semliki Forest virus 42S RNA. In other aspects the amino acid sequence homology between Sindbis, Middelburg and Semliki Forest virus nonstructural proteins is highly significant.  相似文献   

6.
I Singh  A Helenius 《Journal of virology》1992,66(12):7049-7058
The mechanism by which Semliki Forest virus nucleocapsids are uncoated was analyzed in living cells and in vitro. In BHK-21 cells, uncoating occurred with virtually complete efficiency within 1 to 2 min after the nucleocapsids entered the cytoplasm. It was inhibited by monensin, which blocks nucleocapsid penetration from endosomes. As previously shown for Sindbis virus (G. Wengler and G. Wengler, Virology 134:435-442, 1984), the capsid proteins from incoming nucleocapsids became associated with ribosomes. The ribosome-bound capsid proteins were distributed throughout the cytoplasm, while the viral RNA remained associated with vacuolar membranes. Using purified nucleocapsids and ribosomes in vitro, we established that ribosomes alone were sufficient for uncoating. Their role was to release the capsid proteins from nucleocapsids and irreversibly sequester them, in a process independent of energy and translation. The process was stoichiometric rather than catalytic, with a maximum of three to six capsid proteins bound to each ribosome. More than 80% of the capsid proteins could thus be removed from the viral RNA, resulting in the formation of nucleocapsid remnants whose sedimentation coefficients progressively decreased from 140S to 80S as uncoating proceeded.  相似文献   

7.
The C-terminal cysteine protease domain of Semliki Forest virus nonstructural protein 2 (nsP2) regulates the virus life cycle by sequentially cleaving at three specific sites within the virus-encoded replicase polyprotein P1234. The site between nsP3 and nsP4 (the 3/4 site) is cleaved most efficiently. Analysis of Semliki Forest virus-specific cleavage sites with shuffled N-terminal and C-terminal half-sites showed that the main determinants of cleavage efficiency are located in the region preceding the cleavage site. Random mutagenesis analysis revealed that amino acid residues in positions P4, P3, P2, and P1 of the 3/4 cleavage site cannot tolerate much variation, whereas in the P5 position most residues were permitted. When mutations affecting cleavage efficiency were introduced into the 2/3 and 3/4 cleavage sites, the resulting viruses remained viable but had similar defects in P1234 processing as observed in the in vitro assay. Complete blockage of the 3/4 cleavage was found to be lethal. The amino acid in position P1' had a significant effect on cleavage efficiency, and in this regard the protease markedly preferred a glycine residue over the tyrosine natively present in the 3/4 site. Therefore, the cleavage sites represent a compromise between protease recognition and other requirements of the virus life cycle. The protease recognizes at least residues P4 to P1', and the P4 arginine residue plays an important role in the fast cleavage of the 3/4 site.  相似文献   

8.
Nonstructural protein 3 (Nsp3) is an essential subunit of the alphavirus RNA replication complex, although its specific function(s) has yet to be well defined. Previously, it has been shown that Semliki Forest virus Nsp3 (482 amino acids) is a phosphoprotein, and, in the present study, we have mapped its major phosphorylation sites. Mass spectrometric methods utilized included precursor ion scanning, matrix-assisted laser desorption/ionization mass spectrometry used in conjunction with on-target alkaline phosphatase digestions, and tandem mass spectrometry. Two-dimensional peptide mapping was applied to separate tryptic (32)P-labeled phosphopeptides of Nsp3. Radiolabeled peptides were then subjected to Edman sequencing, and phosphoamino acid analysis. In addition, radiolabeled Nsp3 was cleaved successively with cyanogen bromide and trypsin, and microscale iron-chelate affinity chromatography was used to enrich phosphopeptides. By combining these methods, we showed that Nsp3 is phosphorylated on serine residues 320, 327, 332, 335, 356, 359, 362, and 367, and is heavily phosphorylated on peptide Gly(338)-Lys(415), which carries 7-12 phosphates distributed over its 13 potential phosphorylation sites. These analytical findings were corroborated by constructing a Nsp3 derivative devoid of phosphorylation. The results represent the first determination of phosphorylation sites of an alphavirus nonstructural protein, but the approach can be utilized in phosphoprotein analysis in general.  相似文献   

9.
Cells preinfected with fowl plague virus followed by treatment with actinomycin D are a suitable system for studying early protein synthesis in cells infected with Semliki forest virus. One and one-half hours after superinfection, three new nonstructural proteins (NVP) were detected: NVP 145, NVP, 112, and NVP 65. They appeared in parallel with a low incorporation of mannose at the beginning of the infectious cycle. Behavior on chasing suggested a precursor relationship of NVP 112 to the envelope glycoproteins. Two kinds of NVP 65 are described, both of which are varieties of NVP 68 with an incomplete mannose content. One type, detected early after infection, was converted into NVP 68 by supplementary glycosylation. The second, late type was stable. It contains fucose and resembles the NVP 65 observed after impairment of glycosylation. The mechanism of NVP 68 glycosylation is discussed. The presence of the complete carbohydrate moiety is crucial for the cleavage of NVP 68 into the envelope proteins E2 and E3 and, thus, for virus maturation. Only the complete form of NVP 68 was precipitated by envelope-specific antisera. A large production of NVP 78 is a further feature of the early events in infected cells. It is not related to the structural proteins.  相似文献   

10.
Alphaviruses are enveloped, insect-borne viruses, which contain a positive-sense RNA genome. The protein capsid is surrounded by a lipid membrane, which is penetrated by glycoprotein spikes. The structure of the Sindbis virus (SINV) (the type virus) core protein (SCP) was previously determined and found to have a chymotrypsin-like structure. SCP is a serine proteinase which cleaves itself from a polyprotein. Semliki Forest virus (SFV) is among the most distantly related alphaviruses to SINV. Similar to SCP, autocatalysis is inhibited in SFCP after cleavage of the polyprotein by leaving the carboxy-terminal tryptophan in the specificity pocket. The structures of two different crystal forms (I and II) of SFV core protein (SFCP) have been determined to 3.0 Å and 3.3 Å resolution, respectively. The SFCP monomer backbone structure is very similar to that of SCP. The dimeric association between monomers, A and B, found in two different crystal forms of SCP is also present in both crystal forms of SFCP. However, a third monomer, C, occurs in SFCP crystal form I. While monomers A and B make a tail-to-tail dimer contact, monomers B and C make a head-to-head dimer contact. A hydrophobic pocket on the surface of the capsid protein, the proposed site of binding of the E2 glycoprotein, has large conformational differences with respect to SCP and, in contrast to SCP, is found devoid of bound peptide. In particular, Tyr184 is pointing out of the hydrophobic pocket in SFCP, whereas the equivalent tyrosine in SCP is pointing into the pocket. The conformation of Tyr184, found in SFCP, is consistent with its availability for iodination, as observed in the homologous SINV cores. This suggests, by comparison with SCP, that E2 binding to cores causes major conformational changes, including the burial of Tyr184, which would stabilize the intact virus on budding from an infected cell. The head-to-tail contacts found in the pentameric and hexameric associations within the virion utilize the same monomer surface regions as found in the crystalline dimer interfaces. Proteins 27:345–359, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Here, we provide evidence that YqjD, a hypothetical protein of Escherichia coli, is an inner membrane and ribosome binding protein. This protein is expressed during the stationary growth phase, and expression is regulated by stress response sigma factor RpoS. YqjD possesses a transmembrane motif in the C-terminal region and associates with 70S and 100S ribosomes at the N-terminal region. Interestingly, E. coli possesses two paralogous proteins of YqjD, ElaB and YgaM, which are expressed and bind to ribosomes in a similar manner to YqjD. Overexpression of YqjD leads to inhibition of cell growth. It has been suggested that YqjD loses ribosomal activity and localizes ribosomes to the membrane during the stationary phase.  相似文献   

12.
Semliki Forest virus capsid (C) protein molecules (Mr, 33,000) can be introduced efficiently into the cytoplasm of various target cells by electroporation, liposome, and erythrocyte ghost-mediated delivery (M. Elgizoli, Y. Dai, C. Kempf, H. Koblet, and M.R. Michel, J. Virol. 63:2921-2928, 1989). Here, we show that the transferred C protein molecules partition rapidly from the cytosolic compartment into the nucleus. Transport of the C protein molecules into the nucleus was reversibly arrested by metabolic inhibitors, indicating that the transfer process is energy dependent. Fractionation of isolated nuclei revealed that the delivered C protein preferentially associates with the nucleoli. This finding was confirmed by morphological studies, showing that in an in vitro system containing ATP isolated nuclei rapidly accumulated rhodamine-labeled C protein in their nucleoli. Furthermore, in this assay system, the lectin wheat germ agglutinin prevented transfer of C protein through nuclear pores. These results are in agreement with our observation that nucleoli contain measurable amounts of newly synthesized C protein as early as 5 h after infection of cells with SFV. Thereafter, nucleolar-associated C protein increased progressively during the course of infection.  相似文献   

13.
Cholesterol is required for infection by Semliki Forest virus   总被引:11,自引:2,他引:9       下载免费PDF全文
Semliki Forest virus (SFV) and many other enveloped animal viruses enter cells by a membrane fusion reaction triggered by the low pH within the endocytic pathway. In vitro, SFV fusion requires cholesterol in the target membrane, but the role of cholesterol in vivo is unknown. In this paper, the infection pathway of SFV was studied in mammalian and inset cells substantially depleted of sterol. Cholesterol-depleted cells were unaltered in their ability to bind, internalize, and acidify virus, but were blocked in SFV fusion and subsequent virus replication. Depleted cells could be infected by the cholesterol-independent vesicular stomatitis virus, which also enters cells via endocytosis and low pH-mediated fusion. The block in SFV infection was specifically reversed by cholesterol but not by cholestenone, which lacks the critical 3 beta-hydroxyl group. Cholesterol thus is central in the infection pathway of SFV, and may act in vivo to modulate infection by SFV and other pathogens.  相似文献   

14.
Analysis of [35S]methionine-labeled tryptic peptides of the large proteins induced by temperature-sensitive mutants of Semliki Forest virus was carried out. The 130,000-molecular-weight protein induced by ts-2 and ts-3 mutants contained the peptides of capsid protein and of both major envelope proteins E1 and E2. The ts-3-induced protein with molecular weight of 97,000 contained peptides of the capsid and envelope protein E2 but not those of E1. Two proteins with molecular weights of 78,000 and 86,000 from ts-1-infected cells did not contain the peptides of the virion structural proteins. They are evidently expressions of the nonstructural part of the 42S RNA genome of Semliki Forest virus.  相似文献   

15.
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control.  相似文献   

16.
Norwalk virus is the prototype strain for members of the genus Norovirus in the family Caliciviridae, which are associated with epidemic gastroenteritis in humans. The nonstructural protein encoded in the N-terminal region of the first open reading frame (ORF1) of the Norwalk virus genome is analogous in gene order to proteins 2A and 2B of the picornaviruses; the latter is known for its membrane-associated activities. Confocal microscopy imaging of cells transfected with a vector plasmid that provided expression of the entire Norwalk virus N-terminal protein (amino acids 1 to 398 of the ORF1 polyprotein) showed colocalization of this protein with cellular proteins of the Golgi apparatus. Furthermore, this colocalization was characteristically associated with a visible disassembly of the Golgi complex into discrete aggregates. Deletion of a predicted hydrophobic region (amino acids 360 to 379) in a potential 2B-like (2BL) region (amino acids 301 to 398) near the C terminus of the Norwalk virus N-terminal protein reduced Golgi colocalization and disassembly. Confocal imaging was conducted to examine the expression characteristics of fusion proteins in which the 2BL region from the N-terminal protein of Norwalk virus (a genogroup I norovirus) or MD145 (a genogroup II norovirus) was fused to the C terminus of enhanced green fluorescent protein. Expression of each fusion protein in cells showed evidence for its colocalization with the Golgi apparatus. These data indicate that the N-terminal protein of Norwalk virus interacts with the Golgi apparatus and may play a 2BL role in the induction of intracellular membrane rearrangements associated with positive-strand RNA virus replication in cells.  相似文献   

17.
Cytoplasmic p53 polypeptide is associated with ribosomes.   总被引:4,自引:1,他引:3       下载免费PDF全文
Our previous finding that the tumor suppressor p53 is covalently linked to 5.8S rRNA suggested functional association of p53 polypeptide with ribosomes. p53 polypeptide is expressed at low basal levels in the cytoplasm of normal growing cells in the G1 phase of the cell cycle. We report here that cytoplasmic wild-type p53 polypeptide from both rat embryo fibroblasts and MCF7 cells and the A135V transforming mutant p53 polypeptide were found associated with ribosomes to various extents. Treatment of cytoplasmic extracts with RNase or puromycin in the presence of high salt, both of which are known to disrupt ribosomal function, dissociated p53 polypeptide from the ribosomes. In immunoprecipitates of p53 polypeptide-associated ribosomes, 5.8S rRNA was detectable only after proteinase K treatment, indicating all of the 5.8S rRNA in p53-associated ribosomes is covalently linked to protein. While 5.8S rRNA linked to protein was found in the immunoprecipitates of either wild-type or A135V mutant p53 polypeptide associated with ribosomes, little 5.8S rRNA was found in the immunoprecipitates of the slowly sedimenting p53 polypeptide, which was not associated with ribosomes. In contrast, 5.8S rRNA was liberated from bulk ribosomes by 1% sodium dodecyl sulfate, without digestion with proteinase K, indicating that these ribosomes contain 5.8S rRNA, which is not linked to protein. Immunoprecipitation of p53 polypeptide coprecipitated a small fraction of ribosomes. p53 mRNA immunoprecipitated with cytoplasmic p53 polypeptide, while GAPDH mRNA did not. These results show that cytoplasmic p53 polypeptide is associated with a subset of ribosomes, having covalently modified 5.8S rRNA.  相似文献   

18.
Semliki Forest virus, SFV, directs the synthesis of two membrane proteins, p62 and E1, which form a p62E1 heterodimer in the endoplasmic reticulum. After being transported to the plasma membrane (PM), they are incorporated into the virus membrane during the process of virus budding. Electronmicroscopic analyses of the envelope in matured virus show that the heterodimers are clustered into trimeric structures (spikes) which further form a regular surface lattice with T = 4. In this work we have used a genetic approach to study the importance of the trimerization event for virus budding. We have coexpressed a budding competent form of the virus heterodimer with another one which cannot be used for particle formation because of a defect in nucleocapsid (NC) binding. We show that the NC binding-deficient heterodimer is able to inhibit the budding of the competent one in a concentration-dependent manner and that the NC binding-competent heterodimers can rescue the incompetent ones into virus particles. This suggests that the heterodimers are complexed together, probably into the trimeric structures (spikes), at the PM to expose a multivalent binding site for the NC and thereby drive efficient virus budding.  相似文献   

19.
We report here the successful scale up of transient recombinant protein expression to litre scale using Semliki Forest Virus System. The expression of bacterial β-galactosidase was initially compared in BHK and CHO cells and the conditions for optimal infection of BHK cells were identified. 10% FCS in a medium at pH 6.9 and infection in small volumes were found to be optimal. A high MOI results in an increased recombinant protein yield. Stirring does not affect the infection process. Finally we applied these optimal conditions to the production of a microsomal enzyme, human cyclooxygenase-2 in suspension spinners. Five independant productions at the 1 litre scale yielded reproducible substantial amounts of recombinant protein (16 mg microsomal protein 109 cells−1) with an average specific activity of 3942 ± 765 pg PGE2 μg−1 microsomal protein 5 min−1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Spike protein oligomerization control of Semliki Forest virus fusion.   总被引:11,自引:5,他引:6       下载免费PDF全文
M Lobigs  J M Wahlberg    H Garoff 《Journal of virology》1990,64(10):5214-5218
We have recently shown, using cleavage-deficient mutants of the p62-E1 membrane protein complex of Semliki Forest virus that p62 cleavage to E2 is necessary for the activation of the fusion function of the complex at pH 5.8 (a pH optimal for virus fusion) (M. Lobigs and H. Garoff, J. Virol. 64:1233-1240, 1990). In this study, we show that the mutant precursor complexes can be induced to activate membrane fusion when treated with more acidic buffers (pH 5.0 and 4.5), which also appear to dissociate most of the p62-E1 complexes and change the conformation of the E1 subunit (the supposed fusion protein of Semliki Forest virus into a form which is resistant to trypsin digestion. These data suggest that p62 cleavage is not essential for membrane fusion per se but that the crucial event activating this process seems to be the apparent dissociation of the heterodimer, which in turn is facilitated by the spike precursor cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号