首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate and magnitude of buccal expansion are thought to determine the pattern of water flow and the change in buccal pressure during suction feeding. Feeding events that generate higher flow rates should induce stronger suction pressure and allow predators to draw prey from further away. We tested these expectations by measuring the effects of prey capture kinematics on suction pressure and the effects of the latter on the distance from which prey were drawn-termed suction distance. We simultaneously, but not synchronously, recorded 500-Hz video and buccal pressure from 199 sequences of four largemouth bass, Micropterus salmoides, feeding on goldfish. From the video, we quantified several kinematic variables associated with the head and jaws of the feeding bass that were hypothesized to affect pressure. In a multiple regression, kinematic data accounted for 79.7% of the variation among strikes in minimum pressure. Faster mouth opening and hyoid depression were correlated with lower pressures, a larger area under the pressure curve, and a faster rate of pressure reduction. In contrast, buccal pressure variables explained only 16.5% of the variation in suction distance, and no single pressure variable had a significant relationship with suction distance. Thus, although expected relationships between head kinematics and buccal pressure were confirmed, suction distance was only weakly related to buccal pressure. Three explanations are considered. First, bass may not attempt to maximize the distance from which prey are drawn. Second, the response of prey items to suction-induced flow depends on prey behavior and orientation and is, therefore, subject to considerable variation. Third, previous theoretical work indicates that water velocity decays exponentially with distance from the predator's mouth, indicating that variation among strikes in flow at the mouth opening is compressed away from the mouth. These findings are consistent with other recent data and suggest that suction distance is a poor metric of suction feeding performance.  相似文献   

2.
Nearly all aquatic-feeding vertebrates use some amount of suction to capture prey items. Suction prey capture occurs by accelerating a volume of water into the mouth and taking a prey item along with it. Yet, until recently, we lacked the necessary techniques and analytical tools to quantify the flow regime generated by feeding fish. We used a new approach; Digital Particle Image Velocimetery (DPIV) to measure several attributes of the flow generated by feeding bluegill sunfish. We found that the temporal pattern of flow was notably compressed during prey capture. Flow velocity increased rapidly to its peak within 20 ms of the onset of the strike, and this peak corresponded to the time that the prey entered the mouth during capture. The rapid acceleration and deceleration of water suggests that timing is critical for the predator in positioning itself relative to the prey so that it can be drawn into the mouth along with the water. We also found that the volume of water affected by suction was spatially limited. Only rarely did we measure significant flow beyond 1.75 cm of the mouth aperture (in 20 cm fish), further emphasizing the importance of mechanisms, like locomotion, that place the fish mouth in close proximity to the prey. We found that the highest flows towards the mouth along the fish midline were generated not immediately in front of the open mouth, but approximately 0.5 cm anterior to the mouth opening. Away from the midline the peak in flow was closer to the mouth. We propose that this pattern indicates the presence of a bow wave created by the locomotor efforts of the fish. In this scheme, the bow wave acts antagonistically to the flow of water generated by suction, the net effect being to push the region of peak flow away from the open mouth. The peak was located farther from the mouth opening in strikes accompanied by faster locomotion, suggesting faster fish created larger bow waves.  相似文献   

3.
The ontogeny of suction feeding performance, as measured by peak suction generating capacity, was studied in the common snook, Centropomus undecimalis. Suction pressure inside the buccal cavity is a function of the total expansive force exerted on the buccal cavity distributed across the projected area of the buccal cavity. Thus, the scaling exponent of peak suction pressure with fish standard length was predicted to be equal to the scaling exponent of sternohyoideus muscle cross-sectional area, found to be 1.991, minus the scaling exponent for the projected buccal cavity area, found to be 2.009, equal to -0.018. No scaling was found in peak suction pressure generated by 12 snook ranging from 94 to 314 mm SL, supporting the prediction from morphology. C. undecimalis are able to generate similar suction pressures throughout ontogeny.  相似文献   

4.
Ontogenetic changes in the absolute dimensions of the cranial system together with changes in kinematics during prey capture can cause differences in the spatiotemporal patterns of water flow generated during suction feeding. Because the velocity of this water flow determines the force that pulls prey toward and into the mouth cavity, this can affect suction feeding performance. In this study, size-related changes in the suction-induced flow patterns are determined. To do so, a mathematical suction model is applied to video recordings of prey capturing Clarias gariepinus ranging in total length from 111 to 923 mm. Although large C. gariepinus could be expected to have increasing peak velocities of water flow compared with small individuals, the results from the hydrodynamic model show that this is not the case. Yet, when C. gariepinus becomes larger, the expansive phase is prolonged, resulting in a longer sustained flow. This flow also reaches farther in front of the mouth almost proportionally with head size. Forward dynamical simulations with spherical prey that are subjected to the calculated water flows indicate that the absolute distance from which a given prey can be sucked into the mouth as well as the maximal prey diameter increase substantially with increasing head size. Consequently, the range of potential prey that can be captured through suction feeding will become broader during growth of C. gariepinus. This appears to be reflected in the natural diet of this species, where both the size and the number of evasive prey increase with increasing predator size.  相似文献   

5.
Competition has broad effects on fish and specifically the effects of competition on the prey capture kinematics and behavior are important for the assessment of future prey capture studies in bony fishes. Prey capture kinematics and behavior in bony fishes have been shown to be affected by temperature and satiation. The densities at which bony fish are kept have also been shown to affect their growth, behavior, prey selection, feeding and physiology. We investigated how density induced intraspecific competition for food affects the prey capture kinematics of juvenile bluegill sunfish, Lepomis macrochirus. High speed video was utilized to film five bold individuals feeding at three different densities representing different levels of intraspecific competition. We hypothesized that: (1) the feeding kinematics will be faster at higher levels of competition compared to lower levels of competition, and (2) bluegill should shift from more suction-based feeding towards more ram-based feeding with increasing levels of competition in order to outcompete conspecifics for a prey item. We found that, with increased intraspecific competition, prey capture became faster, involving more rapid jaw opening and therefore greater inertial suction, shorter mouth closing times, and shorter gape cycles. Furthermore, the attack velocity of the fish increased with increasing competition, however a shift towards primarily ram based feeding was not confirmed. Our study demonstrates that prey capture kinematics are affected by the presence of conspecifics and future studies need to consider the effects of competition on prey capture kinematics.  相似文献   

6.
Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodontiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula. The neurocranium and suspensorium are enlarged and strengthened to serve as sites of attachment for the greatly hypertrophied adductor mandibulae muscles. Electromyographic recordings made from 11 cranial muscles during feeding revealed four distinct behaviors in the feeding repertoire of B. vetula. Suction is used effectively to capture soft prey and is associated with a motor pattern similar to that reported for many other teleosts. However, when feeding on hard prey, B. vetula directly bit the prey, exhibiting a motor pattern very different from that of suction feeding. During buccal manipulation, repeated cycles of jaw opening and closing (biting) were coupled with rapid movement of the prey in and out of the mouth. Muscle activity during buccal manipulation was similar to that seen during bite-captures. A blowing behavior was periodically employed during prey handling, as prey were forcefully “spit out” from the mouth, either to reposition them or to separate unwanted material from flesh. The motor pattern used during blowing was distinct from similar behaviors described for other fishes, indicating that this behaviors may be unique to tetraodontiforms. Thus B. vetula combines primitive behaviors and motor patterns (suction feeding and buccal manipulation) with specialized morphology (strong teeth, robust jaws, and hypertrophied adductor muscles) and a novel behavior (blowing) to exploit armored prey such as sea urchins molluscs, and crabs. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Seahorses give birth to juveniles having a fully functional feeding apparatus, and juvenile feeding behaviour shows striking similarities to that of adults. However, a significant allometric growth of the snout is observed during which the snout shape changes from relatively short and broad in juveniles to relatively long and slender in adults. Since the shape of the buccal cavity is a critical determinant of the suction performance, this snout allometry will inevitably affect the suction feeding ability. To test whether the snout is optimised for suction feeding throughout an ontogeny, we simulated the expansion of different snout shapes varying from extremely long and slender to short and broad for juvenile and adult snout sizes, using computational fluid dynamic models. Our results showed that the snout diameter at the start of the simulations is involved in a trade-off between the realizable suction volume and expansion time on the one hand (improving with larger initial diameters), and maximal flow velocity on the other hand (improving with smaller initial diameters). Moreover suction performance (suction volume as well as maximal attainable flow velocity) increased with decreasing snout length. However, an increase in snout length decreases the time to reach the prey by the cranial rotation, which may explain the prevalence of long snouts among syngnathid fishes despite the reduced suction performance. Thus, the design of the seahorse snout revolves around a trade-off between the ability to generate high-volume suction versus minimisation of the time needed to reach the prey by the cranial rotation.  相似文献   

8.
The head of ray-finned fishes is structurally complex and is composed of numerous bony, muscular, and ligamentous elements capable of intricate movement. Nearly two centuries of research have been devoted to understanding the function of this cranial musculoskeletal system during prey capture in the dense and viscous aquatic medium. Most fishes generate some amount of inertial suction to capture prey in water. In this overview we trace the history of functional morphological analyses of suction feeding in ray-finned fishes, with a particular focus on the mechanisms by which suction is generated, and present new data using a novel flow imaging technique that enables quantification of the water flow field into the mouth. We begin with a brief overview of studies of cranial anatomy and then summarize progress on understanding function as new information was brought to light by the application of various forms of technology, including high-speed cinematography and video, pressure, impedance, and bone strain measurement. We also provide data from a new technique, digital particle image velocimetry (DPIV) that allows us to quantify patterns of flow into the mouth. We believe that there are three general areas in which future progress needs to occur. First, quantitative three-dimensional studies of buccal and opercular cavity dimensions during prey capture are needed; sonomicrometry and endoscopy are techniques likely to yield these data. Second, a thorough quantitative analysis of the flow field into the mouth during prey capture is necessary to understand the effect of head movement on water in the vicinity of the prey; three-dimensional DPIV analyses will help to provide these data. Third, a more precise understanding of the fitness effects of structural and functional variables in the head coupled with rigorous statistical analyses will allow us to better understand the evolutionary consequences of intra- and interspecific variation in cranial morphology and function.  相似文献   

9.
Premaxillary protrusion is hypothesized to confer a number of feeding advantages to teleost fishes; however, most proposed advantages relate to enhanced stealth or suction production during prey capture. Cyprinodontiformes exhibit an unusual form of premaxillary protrusion where the descending process of the premaxilla does not rotate anteriorly to occlude the sides of the open mouth during prey capture. Instead, the premaxilla is protruded such that it gives the impression of a beak during prey capture. We quantified premaxillary kinematics during feeding in four cyprinodontiform taxa and compared them with three percomorph taxa to identify any performance consequences of this protrusion mechanism. Individual prey capture events were recorded using digital high-speed video at 250-500 frames per second (n4 individuals, 4 strikes per individual). Species differed in the timing of movement and the maximum displacement of the premaxilla during the gape cycle and in the contribution of the premaxilla to jaw closing. Cyprinodontiform taxa produced less premaxillary protrusion than the percomorph taxa, and were consistently slower in the time to maximum gape. Further, it appears cyprinodontiforms can alter the contribution of the premaxilla to mouth closure on an event-specific basis. We were able to demonstrate that, within at least one species, this variability is associated with the location of the prey (bottom vs. water column). Cyprinodontiform upper jaw movements likely reflect increased dexterity associated with a foraging ecology where prey items are "picked" from a variety of locations: the bottom, water column, or surface. We postulate that dexterity requires slow, precisely controlled jaw movements; thus, may be traded off for some aspects of suction-feeding performance, such as protrusion distance and speed.  相似文献   

10.
The ruff, Gymnocephalus cernua, is a European freshwater fish that feeds by sucking up small invertebrates from the bottom of ponds and slow flowing rivers. The feeding movements have been studied by simultaneous electromyography of seventeen muscles of the head and cinematographic techniques. A theoretical model of movements imposes the functional demands of suction upon an abstraction of the form of a teleost head. Three phases in the feeding act, a preparatory phase, a suction phase and a transport phase, could be correlated with the observed movements and EMGs. Differences between the predicted and the actual movement are discussed. Two different types of feeding occur. The direction, magnitude and duration of the suction forces during feeding are modified, according to the position of the prey. A mechanism preventing early mandibular depression allows sudden and strong suction. Retardation of the suspensorial abduction during the overall expansion of the buccal cavity is ascribed to kinetic interrelations with the hyoid arch. Protrusion of the upper jaws also permits an earlier closure of the mouth and directs the food-containing waterflow posteriorly. When the fish is feeding on sinking prey, protrusion occurs later in the sequence of movements than when it is feeding from the bottom. As the protruded jaws produce a downwardly pointed mouth this retardation aims the suction force.  相似文献   

11.
Peter  Aerts 《Journal of Zoology》1990,220(4):653-678
Movement analysis of the 'volume suction' feeding type in Astarotilapia elegans suggests the existence of an inhibiting peripheral feedback control on the fast movements of the head parts, apparently triggered by the food items entering through the mouth aperture. As soon as the prey passes the mouth, rostral expansion of the buccopharyngeal cavity stops. On the basis of a mathematical model and physiological evidence, respectively, visual and chemical perception must probably be excluded as the initial stimulus of the feedback control. The simulation of the hydrodynamic characteristics of the suction flow at the level of the gape reveals sudden changes in the pressure and acceleration waves coupled to the moment of prey uptake. These fluctuations are premised to generate the triggering signal. The possibility of modulation entails re-evaluation of the neuro-motoric preprogamming concept.  相似文献   

12.
The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction‐feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction‐feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior‐directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic‐feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction‐feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
The feeding mechanism of the South American lungfish, Lepidosiren paradoxa retains many primitive teleostome characteristics. In particular, the process of initial prey capture shares four salient functional features with other primitive vertebrates: 1) prey capture by suction feeding, 2) cranial elevation at the cranio-vertebral joint during the mouth opening phase of the strike, 3) the hyoid apparatus plays a major role in mediating expansion of the oral cavity and is one biomechanical pathway involved in depressing the mandible, and 4) peak hyoid excursion occurs after maximum gape is achieved. Lepidosiren also possesses four key morphological and functional specializations of the feeding mechanism: 1) tooth plates, 2) an enlarged cranial rib serving as a site for the origin of muscles depressing the hyoid apparatus, 3) a depressor mandibulae muscle, apparently not homologous to that of amphibians, and 4) a complex sequence of manipulation and chewing of prey in the oral cavity prior to swallowing. The depressor mandibulae is always active during mouth opening, in contrast to some previous suggestions. Chewing cycles include alternating adduction and transport phases. Between each adduction, food may be transported in or out of the buccal cavity to position it between the tooth plates. The depressor mandibulae muscle is active in a double-burst pattern during chewing, with the larger second burst serving to open the mouth during prey transport. Swallowing is characterized by prolonged activity in the hyoid constrictor musculature and the geniothoracicus. Lepidosiren uses hydraulic transport achieved by movements of the hyoid apparatus to position prey within the oral cavity. This function is analogous to that of the tongue in many tetrapods.  相似文献   

14.
For most vertebrates, locomotion is a fundamental componentof prey capture. Despite this ubiquitous link, few studies havequantified the integration of these complex systems. Severalvariables related to locomotor performance, including maximumspeed, acceleration, deceleration, maneuverability, accuracy,and approach stability, likely influence feeding performancein vertebrates. The relative importance of these measures ofperformance, however, depends on the ecology of the predator.While factors such as morphology and physiology likely definethe limits of these variables, other factors such as motivationof the predator, prey type, and habitat structure can also influenceperformance. Understanding how these variables relate to feedingunder a given suite of ecological conditions is central to understandingpredator–prey interactions, and ultimately how locomotionand feeding have co-evolved. The goals of this article are todiscuss several variables of locomotor performance related toprey capture, present new data on the relationship between locomotorand feeding morphology in fishes, discuss the evolution of preycapture in cichlid fishes, and outline some future directionsfor research. While suction feeding is a primary mechanism ofprey capture in fishes, swimming is vital for accurately positioningthe mouth relative to the prey item. Many fishes decelerateduring prey capture using their body and fins, but the pectoralfins have a dominant role in maintaining approach stability.This suggests that fishes employing high-performance suctionfeeding (relatively small mouth) will have larger pectoral finsto facilitate accurate and stable feeding. I provide new dataon the relationship between pectoral fin morphology and maximumgape in centrarchid fishes. For seven species, pectoral finarea was significantly, and negatively, correlated with maximumgape. This example illustrates that the demands from one complexsystem (feeding) can influence another complex system (locomotion).Future studies that examine the morphological, physiological,and functional evolution of locomotion involved in prey captureby aquatic and terrestrial vertebrates will provide insightinto the origin and consequences of diversity.  相似文献   

15.
We examined the effects of variation in swimming speed, or ‘ram speed’, on the feeding kinematics of juvenile Indo-Pacific tarpon, Megalops cyprinoides. Tarpon were filmed feeding on non-elusive prey at 500 images s?1. Prey items were offered at one end of the filming tank, the opposite end where tarpon grouped, to encourage them to use a ram strategy to capture their prey. We describe tarpon as ram-suction feeders. Ram speed varied among strikes from 0.19 to 1.38 m/s and each individual produced speeds that spanned at least 0.9 m/s across trials. Although suction distances were much less variable, prey movement towards the predator was present in all feeding trials. There was a strong positive relationship between initial predator – prey distance and ram speed (r2=0.72, P<0.001). When tarpon initiated their strike from further away, they achieved higher ram speeds, but also took longer to capture their prey. All other timing variables were unaffected by ram speed whereas at higher ram speeds tarpon exhibited greater expansion of the mouth and buccal cavity. Greater buccal expansion accomplished in the same period of time implies that both the total volume of water captured and the water flow rate entering the mouth was greater in strikes at higher ram speeds. Our results demonstrate how feeding kinematics may vary as a function of ram speed, and how fish predators that lack jaw protrusion and have a large gape capacity can maximize their feeding success by altering their swimming speed.  相似文献   

16.
Paleozoic chondrichthyans had a large gape, numerous spike-liketeeth, limited cranial kinesis, and a non-suspensory hyoid,suggesting a feeding mechanism dominated by bite and ram. Modernsharks are characterized by a mobile upper jaw braced by a suspensoryhyoid arch that is highly kinetic. In batoids, the upper jawis dissociated from the cranium permitting extensive protrusionof the jaws. Similar to actinopterygians, the evolution of highlymobile mandibular and hyoid elements has been correlated withextensive radiation of feeding modes in elasmobranchs, particularlythat of suction. Modern elasmobranchs possess a remarkable varietyof feeding modes for a group containing so few species. Biting,suction or filter-feeding may be used in conjunction with ramto capture prey, with most species able to use a combinationof behaviors during a strike. Suction-feeding has repeatedlyarisen within all recent major elasmobranch clades and is associatedwith a suite of morphological and behavioral specializations.Prey capture in a diverse assemblage of purported suction-feedingelasmobranchs is investigated in this study. Drop in water pressuremeasured in the mouth and at the location of the prey showsthat suction inflow drops off rapidly with distance from thepredator's mouth. Elasmobranchs specializing in suction-feedingmay be limited to bottom associated prey and because of theirsmall gape may have a diet restricted to relatively small prey.Behavior can affect performance and overcome constraints imposedby the fluid medium. Suction performance can be enhanced byproximity to a substrate or by decreasing distance from predatorto prey using various morphological and/or behavioral characteristics.Benthic suction-feeders benefit by the increased strike radiusdue to deflection of water flow when feeding close to a substrate,and perhaps require less accuracy when capturing prey. Suctionand ram-suction-feeding elasmobranchs can also use suction inflowto draw prey to them from a short distance, while ram-feedingsharks must accelerate and overtake the prey. The relationshipbetween feeding strategy and ecology may depend in part on ecological,mechanistic or evolutionary specialization. Mechanistic suction-feedingspecialist elasmobranchs are primarily benthic, while most epibenthicand pelagic elasmobranchs are generalists and use ram, suction,and biting to catch a diversity of prey in various habitats.Some shark species are considered to be ecological specialistsin choosing certain kinds of prey over others. Batoids are evolutionaryspecialists in having a flattened morphology and most are generalistfeeders. Filter-feeding elasmobranchs are ecological, mechanistic,and evolutionary specialists.  相似文献   

17.
Jaw protrusion is a major functional motif in fish feeding and can occur during mouth opening or closing. This temporal variation impacts the role that jaw protrusion plays in prey apprehension and processing. The lesser electric ray Narcine brasiliensis is a benthic elasmobranch (Batoidea: Torpediniformes) with an extreme and unique method of prey capture. The feeding kinematics of this species were investigated using high-speed videography and pressure transduction. The ray captures its food by protruding its jaws up to 100% of head length (approximately 20% of disc width) beneath the substrate and generating negative oral pressures (< or = 31 kPa) to suck worms into its mouth. Food is further winnowed from ingested sediment by repeated, often asymmetrical protrusions of the jaws (> 70 degrees deviation from the midline) while sand is expelled from the spiracles, gills and mouth. The pronounced ram contribution of capture (jaw protrusion) brings the mouth close enough to the food to allow suction feeding. Due to the anatomical coupling of the jaws, upper jaw protrusion occurs in the expansive phase (unlike most elasmobranchs and similar to bony fishes), and also exhibits a biphasic (slow-open, fast-open) movement similar to tetrapod feeding. The morphological restrictions that permit this unique protrusion mechanism, including coupled jaws and a narrow gape, may increase suction performance, but also likely strongly constrain dietary breadth.  相似文献   

18.
19.
This study addresses four questions in vertebrate functional morphology through a study of aquatic prey capture in ambystomatid salamanders: (1) How does the feeding mechanism of aquatic salamanders function as a biomechanical system? (2) How similar are the biomechanics of suction feeding in aquatic salamanders and ray-finned fishes? (3) What quantitative relationship does information extracted from electromyograms of striated muscles bear to kinematic patterns and animal performance? and (4) What are the major structural and functional patterns in the evolution of the lower vertebrate skull? During prey capture, larval ambystomatid salamanders display a kinematic pattern similar to that of other lower vertebrates, with peak gape occurring prior to both peak hyoid depression and peak cranial elevation. The depressor mandibulae, rectus cervicis, epaxialis, hypaxialis, and branchiohyoideus muscles are all active for 40–60 msec during the strike and overlap considerably in activity. The two divisions of the adductor mandibulae are active in a continuous burst for 110–130 msec, and the intermandibularis posterior and coracomandibularis are active in a double burst pattern. The antagonistic depressor mandibulae and adductor mandibulae internus become active within 0.2 msec of each other, but the two muscles show very different spike and amplitude patterns during their respective activity periods. Coefficients of variation for kinematic and most electromyographic recordings reach a minimum within a 10 msec time period, just after the mouth starts to open. Pressure within the buccal cavity during the strike reaches a minimum of ?25 mmHg, and minimum pressure occurs synchronously with maximum gill bar adduction. The gill bars (bearing gill rakers that interlock with rakers of adjacent arches) clearly function as a resistance within the oral cavity and restrict posterior water influx during mouth opening, creating a unidirectional flow during feeding. Durations of electromyographic activity alone are poor predictors of kinematic patterns. Analyses of spike amplitude explain an additional fraction of the variance in jaw kinematics, whereas the product of spike number and amplitude is the best statistical predictor of kinematic response variables. Larval ambystomatid salamanders retain the two primitive biomechanical systems for opening and closing the mouth present in nontetrapod vertebrates: elevation of the head by the epaxialis and depression of the mandible by the hyoid apparatus.  相似文献   

20.
Recent studies comparing terrestrial versus aquatic locomotion in animals have shown that changes in kinematics, muscular activation patterns, and performance across media are often dramatic. Surprisingly, however, despite the importance of feeding to the survival of most animals, few studies have compared differences in feeding behaviour between media. The present study compares prey-capture behaviour, strike success, strike velocity and acceleration, and prey-capture kinematics in a semi-aquatic pitviper (Agkistrodon piscivorus) when capturing both terrestrial (mice) and aquatic (fish) prey in a standardized laboratory setting. Strike velocity and acceleration did not differ significantly between media, but instead were positively correlated with initial prey distance. By contrast, the kinematics of terrestrial and aquatic strikes differed significantly in several aspects: max gape angle during the retraction phase, angular velocity of mouth closing during the strike, and the initial head angle before the strike. Terrestrial strikes were associated with higher gape angles during the retraction phase, higher angular velocities of mouth closure, and a more inclined head angle at the onset of the strike. Finally, strike success differed significantly between strike types, with terrestrial strikes being considerably more successful than aquatic strikes. Strike success likely differed due to the relatively slow mouth-closing velocity of aquatic strikes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号