首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In a study of Assemblase, an industrial immobilized penicillin-G acylase, various electron microscopic techniques were used to relate intra-particle enzyme heterogeneity with the morphological heterogeneity of the support material at various levels of detail. Transmission electron microscopy was used for the study of intra-particle penicillin-G acylase distribution in Assemblase particles of various sizes; it revealed an abrupt increase in enzyme loading at the particle surface (1.4-fold) and in the areas (designated halo's) surrounding internal macro-voids (7.7-fold). Cryogenic field-emission scanning electron microscopy related these abrupt local enzyme heterogeneities to local heterogeneity of the support material by revealing the presence of dense top layers surrounding both the particle exterior and the internal macro-voids. Furthermore, it showed a very distinct morphological appearance of the halo. Most probably, all these regions contained relatively more chitosan than gelatin (the polymers Assemblase was constructed of), which suggested local polymer demixing during particle production. A basic thermodynamic line of reasoning suggested that a difference in hydrophilicity between the two polymers induced local demixing. In the future, thermodynamic knowledge on such polymer interactions resulting in matrix heterogeneity may be used as a tool for biocatalyst design.  相似文献   

3.
A physical model was derived for the synthesis of the antibiotic cephalexin with an industrial immobilized penicillin G acylase, called Assemblase. In reactions catalyzed by Assemblase, less product and more by-product are formed in comparison with a free-enzyme catalyzed reaction. The model incorporates reaction with a heterogeneous enzyme distribution, electrostatically coupled transport, and pH-dependent dissociation behavior of reactants and is used to obtain insight in the complex interplay between these individual processes leading to the suboptimal conversion. The model was successfully validated with synthesis experiments for conditions ranging from heavily diffusion limited to hardly diffusion limited, including substrate concentrations from 50 to 600 mM, temperatures between 273 and 303 K, and pH values between 6 and 9. During the conversion of the substrates into cephalexin, severe pH gradients inside the biocatalytic particle, which were previously measured by others, were predicted. Physical insight in such intraparticle process dynamics may give important clues for future biocatalyst design. The modular construction of the model may also facilitate its use for other bioconversions with other biocatalysts.  相似文献   

4.
We used the immunogold-silver staining method (IGSS) for detection of lymphocyte cell surface antigens with monoclonal antibodies in light and electron microscopy and compared this procedure with the immunogold staining method. Two different sizes of colloidal gold particles (5 nm and 15 nm) were used in this study. Immunolabeling on cell surfaces was visualized as fine granules only by IGSS in light microscopy. The labeling density (silver-gold complexes/cell) and diameters of silver-enhanced gold particles on cell surfaces were examined by electron microscopy. Labeling density was influenced not by the enhancement time of the physical developer but by the size of the gold particles. However, the development of shells of silver-enhanced gold particles correlated with the enhancement time of the physical developer rather than the size of the colloidal gold particles. Five-nm gold particles enhanced with the physical developer for 3 min were considered optimal for this IGSS method because of reduced background staining and high specific staining in the cell suspensions in sheep lymph. Moreover, this method may make it possible to show the ultrastructure of identical positive cells detected in 1-micron sections counterstained with toluidine blue by electron microscopy, in addition to the percentage of positive cells by light microscopy.  相似文献   

5.
Glucoamylase and glucose oxidase have been immobilized on carbodiimide-treated activated carbon particles of various sizes. Loading data indicate nonuniform distribution of immobilized enzyme within the porous support particles. Catalysts with different enzyme loading and overall activities have been prepared by varying enzyme concentration in the immobilizing solution. Analysis of these results by a new method based entirely upon experimentally observable catalyst properties indicates that intrinsic catalytic activity is reduced by immobilization of both enzymes. Immobilized glucoamylase intrinsic activity decreases with increasing enzyme loading, and similar behavior is suggested by immobilized glucose oxidase data analysis. The overall activity data interpretation method should prove useful in other immobilized enzyme characterization research, especially in situations where the intraparticle distribution of immobilized enzyme is nonuniform and unknown.  相似文献   

6.
Cephalosporin C amidase was covalently attached using a protein loading of 7.0–200 mg protein/g dry carrier on four epoxy‐activated Sepabeads differing in particle size and pore diameter. Initial‐rate kinetic analysis showed that for Sepabeads with small pore diameters (30–40 nm), the apparent KM of the amidase for hydrolysis of cephalosporin C at 37°C and pH 8.0 increased ~3‐fold in response to increased particle size (~120–400 µm) and increased amount of immobilized enzyme (7.0–70 mg protein/g dry carrier) while maximum specific activity (3.2 U/mg protein; 25% of free amidase) was affected only by particle size. In contrast, for Sepabeads with wide pores (150–250 nm), the KM was independent of the enzyme loading. Internal effectiveness factors calculated from observable Thiele modulus reflected the dependence of KM on geometrical parameters of the particles. A new method for determination of the overall intraparticle pH was developed based on luminescence lifetime measurements in the frequency domain. Sepabeads were doubly labeled using a lipophilic variant of the pH‐sensitive dye fluorescein, and Ru(II) tris(4,7‐diphenyl‐1,10‐phenantroline) whose phosphorescence properties are independent of pH. Luminescent lifetime measurements of doubly labeled particle suspensions showed superior signal‐to‐noise ratio compared to fluorescence intensity‐based measurements using singly labeled particles. The difference at apparent steady state (ΔpH) between bulk (external pH) and intraparticle pH (internal pH) was as large as ~0.6 units. The ΔpH was dependent on substrate concentration, particle size, and pore diameter. Therefore, these results characterize the role of carrier characteristics and reaction parameters in the formation of concentration gradients for substrate and acidic product during hydrolysis of cephalosporin C by immobilized amidase. The strong pH dependence of the immobilized amidase underscores the importance of considering intraparticle pH gradients in the design of an efficient carrier‐bound biocatalyst. Biotechnol. Bioeng. 2010;106: 528–540. © 2010 Wiley Periodicals, Inc.  相似文献   

7.

Background

Industrial-scale biocatalytic synthesis of fine chemicals occurs preferentially as continuous processes employing immobilized enzymes on insoluble porous carriers. Diffusional effects in these systems often create substrate and product concentration gradients between bulk liquid and the carrier. Moreover, some widely-used biotransformation processes induce changes in proton concentration. Unlike the bulk pH, which is usually controlled at a suitable value, the intraparticle pH of immobilized enzymes may deviate significantly from its activity and stability optima. The magnitude of the resulting pH gradient depends on the ratio of characteristic times for enzymatic reaction and on mass transfer (the latter is strongly influenced by geometrical features of the porous carrier). Design and selection of optimally performing enzyme immobilizates would therefore benefit largely from experimental studies of the intraparticle pH environment. Here, a simple and non-invasive method based on dual-lifetime referencing (DLR) for pH determination in immobilized enzymes is introduced. The technique is applicable to other systems in which particles are kept in suspension by agitation.

Results

The DLR method employs fluorescein as pH-sensitive luminophore and Ru(II) tris(4,7-diphenyl-1,10-phenantroline), abbreviated Ru(dpp), as the reference luminophore. Luminescence intensities of the two luminophores are converted into an overall phase shift suitable for pH determination in the range 5.0-8.0. Sepabeads EC-EP were labeled by physically incorporating lipophilic variants of the two luminophores into their polymeric matrix. These beads were employed as carriers for immobilization of cephalosporin C amidase (a model enzyme of industrial relevance). The luminophores did not interfere with the enzyme immobilization characteristics. Analytical intraparticle pH determination was optimized for sensitivity, reproducibility and signal stability under conditions of continuous measurement. During hydrolysis of cephalosporin C by the immobilizate in a stirred reactor with bulk pH maintained at 8.0, the intraparticle pH dropped initially by about 1 pH unit and gradually returned to the bulk pH, reflecting the depletion of substrate from solution. These results support measurement of intraparticle pH as a potential analytical processing tool for proton-forming/consuming biotransformations catalyzed by carrier-bound immobilized enzymes.

Conclusions

Fluorescein and Ru(dpp) constitute a useful pair of luminophores in by DLR-based intraparticle pH monitoring. The pH range accessible by the chosen DLR system overlaps favorably with the pH ranges at which enzymes are optimally active and stable. DLR removes the restriction of working with static immobilized enzyme particles, enabling suspensions of particles to be characterized also. The pH gradient developed between particle and bulk liquid during reaction steady state is an important carrier selection parameter for enzyme immobilization and optimization of biocatalytic conversion processes. Determination of this parameter was rendered possible by the presented DLR method.  相似文献   

8.
We investigated the optimal gold particle size for use with polarized incident light (epi polarization) microscopy with immunogold immunohistological preparation in both immunogold indirect (IGS) and silver-enhanced immunogold-silver staining (IGSS) techniques. A range of gold particle sizes from 5 nm-40 nm was used along with tissue of known immunoreactivity with a well-characterized primary monoclonal antibody. Checkerboard titrations were carried out for each technique and for each particle size. The preparations were viewed using a standard polarized incident light microscope and assessed in a semi-quantitative manner. Adequate visualization of gold particles was achieved using the indirect staining method only with a particle size of 40 nm. With silver enhancement (IGSS), particles of all sizes were clearly seen. However, 5-nm particles were considered optimal for this method because of reduced background staining, high titration of antisera possible, and crisp localization of the visual signal.  相似文献   

9.
L Scopsi  L I Larsson 《Medical biology》1986,64(2-3):139-145
Colloidal gold particles are the markers of choice for ultrastructural localization of antigens. By reducing gold chloride with tannic acid and trisodium citrate, a broad range of narrowly determined particle sizes can be obtained. Such particles can easily be coupled to a number of proteins and the resulting conjugates are conveniently purified on a gel-chromatography column. Their application in light microscopy requires an amplification step with a silver physical developer. Silver-intensified colloidal gold probes can advantageously be used for immunostaining of cryostat, paraffin and plastic sections. Moreover, permeabilized cultured cells and whole-mount preparations can also be stained with gold-silver techniques. Silver intensification does not affect reactivity of a number of tissue antigens, thus permitting double staining combinations with immunoperoxidase or immunofluorescence methods.  相似文献   

10.
Conventional freeze-fracturing electron microscopy was used to study water-soluble proteins and different forms of Ca2+-ATPase-detergent complexes. Freeze-fracture images of solutions containing proteins larger than myoglobin showed the presence of distinct, randomly dispersed particles on smooth fracture surfaces. The distribution of sizes of these particles was closely to Gaussian, with a mean size which was correlated to the Stokes diameter. Monomeric Ca2+-ATPase from sarcoplasmic reticulum, solubilized by deoxycholate or a non-ionic detergent, showed a bimodal distribution of particle sizes. Even more complex distributions were found for dimeric and trimeric preparations of Ca2+-ATPase. The results can be interpreted on the assumption that the Ca2+-ATPase molecule is elongated, with an overall length of about 110 A and a width in its largest part of about 75 A. It is concluded on the basis of the presented results that freeze-fracture electron microscopy can be successfully used for morphological studies of protein molecules in solution.  相似文献   

11.
Human health risk estimates for sites with contaminated soils are often based on the assumption that the bulk concentration of substances in outdoor soil samples is a reasonable predictor of exposures via incidental soil ingestion, soil particle inhalation, and dermal absorption. Most underlying conceptual models are grossly simplistic, however, when considered in light of (i) biases in the distribution of contaminants across soil particle sizes, (ii) the size range of particles in soils and dusts that is environmentally available, and (iii) factors that influence desorption from particles and uptake into humans. The available studies indicate that contaminant distribution across soil particle size fractions varies widely between different soil types and contaminant delivery mechanisms, and it cannot be assumed that higher masses of contaminants per unit mass of soil are correlated with smaller particles sizes. Soil data gathered in support of detailed human health risk assessments, therefore, should allow for the examination of distribution across particle sizes of contaminants of concern, and consider those size fractions most critical to human exposure. Soil evaluations for health risk assessments of metals/metalloids should also consider mineralogical characterization.  相似文献   

12.
In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis ratio (S/H ratio) and the yield decreased, resulting in lower product and higher by-product concentrations. The effect of pH, enzyme loading, and temperature was investigated, their influence on the course of the reaction was evaluated, and eventually diffusion limitation was minimised. It was found that at pH >or=7 the effect of diffusion limitation was eminent; the difference in S/H ratio and yield between free and immobilised enzyme was considerable. At lower pH, the influence of diffusion limitation was minimal. At low temperature, high yields and S/H ratios were found for all enzymes tested because the hydrolysis reactions were suppressed and the synthesis reaction was hardly influenced by temperature. The enzyme loading influenced the S/H ratio and yield, as expected for diffusion-limited particles. For Assemblase 3750 (the number refers to the degree of enzyme loading), it was proven that both cephalexin synthesis and hydrolysis were diffusion limited. For Assemblase 7500, which carries double the enzyme load of Assemblase 3750, these reactions were also proven to be diffusion limited, together with the binding-step of the substrate phenylglycine amide to the enzyme. For an actual process, the effects of diffusion limitation should preferably be minimised. This can be achieved at low temperature, low pH, and high substrate concentrations. An optimum in S/H ratio and yield was found at pH 7.5 and low temperature, where a relatively low reaction pH can be combined with a relatively high solubility of 7-ADCA. When comparing the different enzymes at these conditions, the free enzyme gave slightly better results than both immobilised biocatalysts, but the effect of diffusion limitation was minimal.  相似文献   

13.
In previous work we reported on the simulation of mixing behavior of a slowly rotating drum for solid-state fermentation (SSF) using a discrete particle model. In this investigation the discrete particle model is extended with heat and moisture transfer. Heat transfer is implemented in the model via interparticle contacts and the interparticle heat transfer coefficient is determined experimentally. The model is shown to accurately predict heat transfer and resulting temperature gradients in a mixed wheat grain bed. In addition to heat transfer, the addition and subsequent distribution of water in the substrate bed is also studied. The water is added to the bed via spray nozzles to overcome desiccation of the bed during evaporative cooling. The development of moisture profiles in the bed during spraying and mixing are studied experimentally with a water-soluble fluorescent tracer. Two processes that affect the water distribution are considered in the model: the intraparticle absorption process, and the interparticle transfer of free water. It is found that optimum distribution can be achieved when the free water present at the surface of the grains is quickly distributed in the bed, for example, by fast mixing. Alternatively, a short spraying period, followed by a period of mixing without water addition, can be applied. The discrete particle model developed is used successfully to examine the influence of process operation on the moisture distribution (e.g., fill level and rotation rate). It is concluded that the extended discrete particle model can be used as a powerful predictive tool to derive operating strategies and criteria for design and scale-up for mixed SSF and other processes with granular media.  相似文献   

14.
Quasielastic light scattering spectroscopy (QLS) is an optical method for the determination of diffusion coefficients of particles in solution. Here we discuss the principles of QLS and explain how the distribution of particle sizes can be reconstructed from the measured correlation function of scattered light. Non-invasive observation of the temporal evolution of particle sizes provides a powerful tool for studying protein assembly. We illustrate practical applications of QLS with examples from studies of fibril formation of the amyloid beta-protein.  相似文献   

15.
Studies by dynamic and total intensity light scattering, ultracentrifugation, electron microscopy, and chemical crosslinking on solutions of the pig heart mitochondrial enzymes, malate dehydrogenase and citrate synthase (separately and together) demonstrate that polyethylene glycol induces very large homoassociations of each enzyme, and still larger heteroenzyme complexes between these two enzymes in the solution phase. Specificity of this heteroassociation is indicated by the facts that heteroassociations with bovine serum albumin were not observed for either the mitochondrial dehydrogenase or the synthase or between cytosolic malate dehydrogenase and citrate synthase. The weight fraction of the enzymes in the mitochondrial dehydrogenase-synthase associated particles in the solution phase was less than 0.03% with the dilute conditions used in the dynamic light scattering measurements. Neither palmitoyl-CoA nor other solution conditions tested significantly increased this weight fraction of associated enzymes in the solution phase. Because of the extremely low solubility of the associated species, however, the majority of the enzymes can be precipitated as the heteroenzyme complex. This precipitation is a classical first-order transition in spite of the large particle sizes and broad size distribution. Ionic effects on the solubility of the heteroenzyme complex appear to be of general electrostatic nature. Polyethylene glycol was found to be more potent in precipitating this complex than dextrans, polyvinylpyrrolidones, ficoll, and beta-lactoglobulin.  相似文献   

16.
A latent multifunctional protease with a molecular weight of 722,000 to 760,000 purified from rat liver cytosol has been reported. This paper reports on the structure and subunit composition of the enzyme. Electron microscopy showed that the enzyme was a ring-shaped particle of 160(+/- 7) A diameter and 110(+/- 10) A height with a small hole of 10 to 30 A diameter (1 A = 0.1 nm). Small-angle X-ray scattering analysis indicated that the enzyme had a prolate ellipsoidal structure with an ellipsoid cavity in the center. The maximum dimension of the enzyme was estimated to be 210 A from a pair-distance distribution function. The radius of gyration obtained from a Guinier plot and the Stokes radius based on the ellipsoidal model were 66 A and 76 A, respectively. On two-dimensional gel electrophoresis, the purified enzyme separated into 13 to 15 characteristic components with molecular weights of 22,000 to 33,000 and isoelectric points of 4 to 9. These multiple components were not artifacts produced by limited proteolysis during purification of the enzyme, because the cell-free translation products in a reticulocyte lysate with poly(A)-mRNA of rat liver consisted of multiple components of similar sizes, and because peptide mapping analyses with lysylendopeptidase and V8 protease demonstrated clear differences in the primary structures of these components. The 13 main components were isolated from the purified enzyme by reverse-phase high performance liquid chromatography and shown to be non-identical. A model of the enzyme is proposed on the basis of these observations and previous physicochemical studies. Interestingly, the morphology of this protease is similar to that of the 16 to 22 S ring-shaped particles found in a variety of eukaryotic organisms. The structural similarity between this multi-protease complex and various reported subcellular particles is discussed.  相似文献   

17.
This paper describes the formation and properties of protein particle suspensions. The protein particles were prepared by a versatile method based on quenching a phase-separating protein–polysaccharide mixture. Two proteins were selected, gelatin and whey protein. Gelatin forms aggregates by means of reversible physical bonds, and whey protein forms aggregates that can be stabilized by chemical bonds. Rheology and microscopy show that protein particles aggregate into an elastic particle gel for both proteins. Properties similar to model systems of synthetic colloidal particles were obtained using protein particle suspensions. This suggests that the behaviour of the particle suspensions is mainly governed by the mesoscopic properties of the particle networks and to a lesser extent on the molecular properties of the particles.  相似文献   

18.
The purpose of this research was to form stable suspensions of submicron particles of cyclosporine A, a water-insoluble drug, by rapid expansion from supercritical to aqueous solution (RESAS). A solution of cyclosporine A in CO2 was expanded into an aqueous solution containing phospholipid vesicles mixed with nonionic surfactants to provide stabilization against particle growth resulting from collisions in the expanding jet. The products were evaluated by measuring drug loading with high performance liquid chromatography (HPLC), particle sizing by dynamic light scattering (DLS), and particle morphology by transmission electron microscopy (TEM) and x-ray diffraction. The ability of the surfactant molecules to orient at the surface of the particles and provide steric stabilization could be manipulated by changing process variables including temperature and suspension concentration. Suspensions with high payloads (up to 54 mg/mL) could be achieved with a mean diameter of 500 nm and particle size distribution ranging from 40 to 920 nm. This size range is several hundred nanometers smaller than that produced by RESAS for particles stabilized by Tween 80 alone. The high drug payloads (≈10 times greater than the equilibrium solubility), the small particle sizes, and the long-term stability make this process attractive for development.  相似文献   

19.
Microflow digital imaging (MDI) has become a widely accepted method for assessing sub-visible particles in pharmaceutical formulations however, to date; no data have been presented on the utility of this methodology when formulations include opaque vaccine adjuvants. This study evaluates the ability of MDI to assess sub-visible particles under these conditions. A Fluid Imaging Technologies Inc. FlowCAM® instrument was used to assess a number of sub-visible particle types in solution with increasing concentrations of AddaVax, a nanoscale squalene-based adjuvant. With the objective (10X) used and the limitations of the sensor resolution, the instrument was incapable of distinguishing between sub-visible particles and AddaVax droplets at particle sizes less than 5 μm. The instrument was capable of imaging all particle types assessed (polystyrene beads, borosilicate glass, cellulose, polyethylene protein aggregate mimics, and lysozyme protein aggregates) at sizes greater than 5 μm in concentrations of AddaVax up to 50% (vol:vol). Reduced edge gradients and a decrease in measured particle sizes were noted as adjuvant concentrations increased. No significant changes in particle counts were observed for polystyrene particle standards and lysozyme protein aggregates, however significant reductions in particle counts were observed for borosilicate (80% of original) and cellulose (92% of original) particles. This reduction in particle counts may be due to the opaque adjuvant masking translucent particles present in borosilicate and cellulose samples. Although the results suggest that the utility of MDI for assessing sub-visible particles in high concentrations of adjuvant may be highly dependent on particle morphology, we believe that further investigation of this methodology to assess sub-visible particles in challenging formulations is warranted.  相似文献   

20.
In Part I of this series,(1) we derived a model and made simulations for a multistage fluidized bed reactor (MFBR). It was concluded that the MFBR can be an attractive alternative for a fixed bed reactor when operated with a deactivating biocatalyst. In Part II of this series, the design of a laboratory-scale MFBR and its evaluation to investigate the practical feasibility of this reactor type, will be described. Experiments with a duration as long as 10 days were carried out successfully using immobilized glucose isomerase as a model reaction system. The results predicted by the model are in good agreement with the measured glucose concentration and biocatalyst activity gradients, indicating perfect mixing of the particles in the reactor compartments.The diameters of the biocatalyst particles used in the experiments showed a large spread, with the largest being 1.7 times the smallest. Therefore, an additional check was carried out, to make sure that the particles were not segregating according to size. Particles withdrawn from the reactor compartments were investigated using an image analyzer. Histograms of particle size distribution do not indicate segregation and it is concluded that the particles used have been mixed completely within the compartments. As a result, transport of biocatalyst is nearly plug flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号