首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of stimulation of the ipsilateral and contralateral red nuclei on motoneurons of the hypoglossal nucleus was studied in cats anesthetized with chloralose and pentobarbital. In 35 (69%) of the 51 motoneurons tested, PSPs were generated in response to stimulation of the red nuclei by series of 3 to 5 stimuli of threshold strength and with a frequency of 500–600/sec. Of this number, 33 motoneurons responded to stimulation by EPSPs, whose latent periods varied from 3.5 to 14.0 msec (mean value for the ipsilateral red nucleus 5.7±0.75, for the contralateral nucleus 6.8±0.8 msec), whereas two motoneurons responded (after 6.2 msec) by IPSPs. Of the 35 motoneurons responding to stimulation of the red nuclei, stimulation of the lingual nerve evoked EPSPs in 31 and IPSPs in 4 (two of them were inhibited by rubrofugal impulses). IPSPs were generated as a result of stimulation of the lingual nerve in 16 motoneurons which did not respond to rubrofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 62–66, January–February, 1978.  相似文献   

2.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

3.
Postsynaptic potentials of motoneurons of the masseter and digastric muscles evoked by stimulation of the infraorbital nerve with a strength of between 1 and 10 thresholds were investigated in cats anesthetized with a mixture of chloralose and pentobarbital. Depending on their ability to be activated by low-threshold afferents of this nerve, motoneurons of the masseter were divided into two groups. Stimuli with a strength of 1.2–2.5 times above threshold for the most excitable fibers of the infraorbital nerve evoked short-latency EPSPs in the motoneurons of the first group; a further increase in stimulus strength (3–9 thresholds) led to the appearance of IPSPs with latent periods of 2.8–3.5 msec. Motoneurons of the second group responded to stimulation of the infraorbital nerve with a strength of 3–9 thresholds by IPSPs whose latent periods varied from 6 to 8 msec. Stimuli below 3 thresholds in strength evoked no responses in these motoneurons. Stimulation of the infraorbital nerve with pulses of between 1 and 2 thresholds in strength evoked EPSPs in digastric motoneurons, but an increase in the strength of stimulation led to action potential generation. The presence of many excitatory and inhibitory inputs formed by afferent fibers of different types evidently provides a basis for functional diversity of jaw-opening and jaw-closing reflexes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 6, pp. 596–603, November–December, 1980.  相似文献   

4.
Postsynaptic potentials evoked by stimulation of the motor cortex or pyramids before and after acute pyramidotomy were investigated in the lumbar motoneurons of monkeys. In response to activation of fibers of the pyramidal tract monosynaptic EPSPs predominated in motoneurons innervating the distal muscles of the hind limbs. Monosynaptic EPSPs in the motoneurons of the distal muscles had a significantly higher amplitude and could be evoked by weaker stimuli than EPSPs in the motoneurons of the proximal muscles. Cortico-motoneuronal EPSPs in the motoneurons of the distal muscles had a less marked frequency potentiation than EPSPs with monosynaptic segmental delay in the motoneurons of the proximal muscles. Cortico-extrapyramidal synaptic responses appeared in the pyramidotomized monkeys during intensive repetitive stimulation of the motor cortex in motoneurons of both distal and proximal muscles. These effects, transmitted by descending projections of the brain stem, may be responsible for the partial preservation of cortical motor control after pyramidotomy.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 587–596, November–December, 1972.  相似文献   

5.
Synaptic effects of the red nucleus on motoneurons of the facial nucleus were studied in cats. Impulses from the red nucleus activate motoneurons innervating the auricular, buccal, and orbicularis oculi muscles. Monosynaptic EPSPs appeared in all motoneurons which responded to stimulation. Their mean latent period was 1.5±0.04 msec, duration 12.3 ± 0.34 msec, and rise time between 1.5 and 3.2 msec. Repetitive stimulation of the red nucleus led to marked facilitation of the testing EPSP. Facilitation was maximal when the interval between stimuli was 3.5 msec; it was reduced by either a decrease or an increase in the interval. The functional role of the monosynaptic connections of neurons of the red nucleus and of the facial motoneurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 272–279, May–June, 1972.  相似文献   

6.
Acute experiments on cats under chloralose-pentobarbital anesthesia showed that application of single stimuli to Deiters' nucleus evoked monosynaptic EPSPs in motoneurons of the accessory nucleus. Latent periods of EPSPs ranged from 1.3 to 2.3 msec (mean 1.8±0.3 msec), their rise time was 0.5–1.0 msec, and their duration 7–10 msec. During repetitive stimulation the EPSPs were weakly potentiated, but with an increase in the strength of stimulation applied to Deiters' nucleus they readily changed into action potentials. In some motoneurons polysynaptic EPSPs with latent periods of the order of 6.0 msec appeared on the descending phase of these EPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 515–519, September–October, 1981.  相似文献   

7.
Postsynaptic potentials evoked by stimulation of ipsilateral and contralateral horizontal semicircular canals in motoneurons of muscles tilting and turning the head were investigated in acute experiments on cats anesthetized with chloralose and pentobarbital. Stimulation of the ipsilateral canal evoked EPSPs with latent periods varying from 1.8 to 10.0 msec in 25 of these motoneurons and IPSPs with latent periods varying from 1.9 to 3.9 msec in 10 of them. Calculation of the impulse conduction time from the ipsilateral semicircular canal through Deiters' nucleus to the cervical motoneurons indicates that EPSPs with latent periods of under 3.8 msec may be regarded as disynaptic, and those with latent periods of over 3.8 msec as polysynaptic. Stimulation of the contralateral canal evoked EPSPs with latent periods varying from 1.8 to 6.0 msec in 19 motoneurons and IPSPs with latent periods varying from 3.2 to 3.9 msec in two cells. The possible pathways of transmission of these influences and their functional role are discussed.  相似文献   

8.
Intracellular recordings were made of synaptic responses of 93 motoneurons in the cervical region of the cat spinal cord to stimulation of the medial longitudinal bundle, the brain-stem reticular formation, the lateral vestibular nucleus of Deiters, and the red nucleus. In response to stimulation of the medial longitudinal bundle and the vestibular nucleus responses in the motoneurons of the distal groups of muscles of the forelimb were predominantly excitatory, whereas in motoneurons of the proximal extensor muscles they were predominantly inhibitory. During stimulation of the red nucleus, excitatory and inhibitory responses were recorded in almost equal numbers of cells regardless of their functional class. Monosynaptic EPSPs appeared in one-fifth of motoneurons in response to stimulation of the medial longitudinal bundle and, in a few cases, to stimulation of the vestibular and red nuclei. Otherwise, during stimulation of these structures polysynaptic responses were recorded in the motoneurons. In 62% of cases postsynaptic potentials arising in response to stimulation of the various suprasegmental structures tested were identical in direction in the same motoneurons. A mutually facilitatory effect was observed during stimulation of different suprasegmental inputs. The results are evidence that interaction between influences of the structures tested takes place largely at the level of spinal interneurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 391–399, July–August, 1978.  相似文献   

9.
Postsynaptic potentials evoked in accessory nerve motoneurons by stimulation of the ipsilateral and contralateral red nuclei were investigated in acute experiments on cats anesthetized with chloralose and pentobarbital. Polysynaptic EPSPs with latent periods of 5.2 to 16 (mean 9.1 ± 0.7) msec and from 5.5 to 18 (mean 10.3 ± 0.9) msec, respectively, appeared in motoneurons of the accessory nerve in response to stimulation of the contralateral and ipsilateral red nuclei. A minimum of two or three stimuli was necessary to produce EPSPs in these motoneurons. In response to single stimulation of the contralateral and ipsilateral red nuclei EPSPs appeared in four motoneurons of the trapezius muscle with latent periods of 2.5 to 5.0 and 3.0 to 5.2 msec, respectively. An increase in the number of stimuli led to action potential generation by motoneurons. The functional role of such activation is discussed.A. A. Bogomolets Institue of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 532–536, September–October, 1982.  相似文献   

10.
Experiments on cats with simultaneous extracellular recording, stimulation of single propriospinal neurons, and intracellular recording of unitary postsynaptic potentials from motoneurons, followed by computer averaging showed that direct stimulation of individual propriospinal cells receiving mono- and disynaptic influences from the medial reticular formation can evoke monosynaptic EPSPs and IPSPs in lower lumbar motoneurons. The amplitude of these EPSPs was 49.6±6.0 and of the IPSPs 28.9±2.9 µV and their synaptic delay was 0.34±0.05 msec. The same propriospinal neuron of the ventral horn of the upper lumbar segments may be connected with several motoneurons of the hind limb muscles.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 300–306, May–June, 1977.  相似文献   

11.
Acute experiments on cats anesthetized with chloralose and pentobarbital showed that excitation of fast-conducting (130 m/sec) reticulospinal fibers, arising during stimulation of the ipsilateral medullary reticular gigantocellular nucleus evoked monosynaptic EPSPs in motoneurons of the accessory nerve nucleus. The EPSPs had latent periods of between 0.6 and 1.0 msec (mean 0.7 msec), they reached their maximal amplitude (4.0 mV) after 2.0–2.5 msec, and lasted about 10 msec. The EPSPs underwent only weak potentiation through the different types of stimulation of the gigantocellular nucleus and were not transformed into action potentials.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 62–66, January–February, 1980.  相似文献   

12.
Responses of 239 neurons of the pericruciate cortex to stimulation of the medial geniculate body and pyramidal tract were investigated (189 extracellularly, 50 intracellularly) in cats anesthetized with thiopental and immobilized with D-tubocurarine. In response to stimulation of the medial geniculate body, the mean spontaneous firing rate of 63.6% of neurons in the pericruciate cortex increased by 10–25%, in 23.6% of neurons it decreased within the same limits, and mixed effects were observed in 5.5% of neurons. Phasic responses to single stimulation of the medial geniculate body were observed in 20% of neurons of the pericruciate cortex. Responses with a latent period of 0.3–1.0 msec (16%) were classed as antidromic, those with a latent period of 1.5–2.0 msec (20%) as orthodromic, monosynaptic, and those with a latent period of 2.5–4.0 msec or more (64%) as polysynaptic. With intracellular recording, excitatory responses of the EPSP, EPSP-AP, and AP type with latent periods of between 1.3 and 19.5 msec developed in 78.2% of cells. IPSPs, which were recorded in 21.8% of neurons, were usually found as components of mixed responses; primary IPSPs were found in only two cases. Monosynaptic connection of the medial geniculate body was shown to take place with neurons of the pericruciate cortex that did not belong to the pyramidal tract.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 1, pp. 18–24, January–February, 1979.  相似文献   

13.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

14.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

15.
Monopolar intracortical stimulation of the auditory cortex was carried out in cats immobilized with D-tubocurarine. A macroelectrode (tip diameter 100 µ) or a microelectrode (tip diameter 10–15 µ) was used for stimulation. In both cases, besides excitatory responses, primary IPSPs with latent periods of 0.4–1.2 and 1.4–6.0 msec were recorded in cortical neurons close to the point of stimulation. The first group of IPSPs are considered to be generated in response to direct stimulation of bodies or axons of inhibitory cortical neurons, i.e., monosynaptically. The amplitude of these IPSPs varied in different neurons from 3 to 15 mV, and their duration from 4 to 150 msec. Additional later inhibitory responses were superposed on many of them. Of the IPSPs generated in auditory cortical neurons in response to stimulation of geniculocortical fibers 1.5% had a latency of 0.8–1.3 msec. They also are assumed to be monosynaptic. It is concluded that the duration of synaptic delay of IPSPs in cortical neurons and spinal motoneurons is the same, namely 0.3–0.4 msec. Axons of auditory cortical inhibitory neurons may be 1.5 mm long. The velocity of impulse conduction along these axons is 1.6–2.8 m/sec. The genesis of some special features of IPSPs of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 458–467, September–October, 1975.  相似文献   

16.
Stimulation of the infraorbital nerve at strengths 1.4–2.5 times higer than the threshold of excitation of A fibers in cats anesthetized with chloralose and pentobarbital evoked EPSPs with an amplitude up to 3.0 mV and a duration of 9–15 msec in 69% of masseter motoneurons after 1.5–3.0 msec. These EPSPs were complex and formed by summation of simpler short-latency and long-latency EPSPs. The short-latency EPSPs appeared in response to infraorbital nerve stimulation at 1.1–1.5 thresholds and had a slow rate of rise (2.5–4.5 msec, mean 3.7±0.4 msec), low amplitude (under 2.0 mV), and short duration (5–6 msec). Their latent period varied from 1.5 to 3.0 msec (mean 2.1±0.2 msec). The shortness of the latent period and its constancy during stimulation of the nerve at increasing strength, and also the character of development of facilitation and inhibition of the EPSP during high-frequency stimulation suggests that these EPSPs are monosynaptic. The slow rate of rise suggested that these EPSPs arise on distal dendrites of the motoneurons. Long-latency EPSPs appeared 7–9 msec after stimulation of the infraorbital nerve at 1.1–1.5 thresholds. Their amplitude reached 1.5–2.0 mV and their duration 7–9 msec. The long duration of the latent period combined with low ability to reproduce high-frequency stimulation (up to 30/sec) points to the polysynaptic origin of these EPSPs.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 6, pp. 583–591, November–December, 1977.  相似文献   

17.
Single unit responses of the first (SI) and second (SII) somatosensory areas to stimulation of the ventroposterior thalamic nucleus (VP) were investigated in cats immobilized with D-tubocurarine. In response to VP stimulation 12.0% of reacting SI neurons and 9.5% of SII neurons generated an antidromic spike. In most antidromic responses of both SI and SII neurons the latent period did not exceed 1.0 msec. The minimal latent period of spike potentials during orthodromic excitation was 1.5 msec in SI and 1.7 msec in SII. Neurons with an orthodromic spike latency of not more than 3.0 msec were more numerous in SI than those with a latency of 3.1–4.5 msec. The ratio between the numbers of neurons of these two groups in SII was the opposite. In SII there were many more neurons with a latency of 5.6–8.0 msec than in SI. EPSPs appeared after a latent period of 1.1–9.0 msec in SI and of 1.4–6.6 msec in SII. The latent period of IPSPs was 1.5–6.8 msec in SI and 2.2–9.4 msec in SII. The relative importance of different pathways for excitatory and inhibitory influences of VP on SI and SII neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 115–121, March–April, 1976.  相似文献   

18.
Extracellular and intracellular single unit responses of neurons of the auditory cortex to electrical stimulation of geniculocortical fibers (GCF) were recorded in experiments on cats immobilized with tubocurarine. The latent period of responses of 15% of neurons to GCF stimulation was 0.3–1.5 msec. It is postulated that they were excited anti-dromically. The latent period of spikes generated by neurons responding to GCF stimulation orthodromically varied from 1.6 to 12 msec. In 28.6% of neurons the latent period was 1.6–2.5 msec. It is postulated that these neurons were excited monosynaptically. Intracellular recording revealed primary IPSPs in response to GCF stimulation in 63.3% of neurons, a brief EPSP followed by a prolonged IPSP in 17.7%, an EPSP-spike-IPSP complex in 12.3%, and subthreshold EPSPs in 7% of neurons. The latent period of the primary IPSPs varied from 1.8 to 11 msec, being 1.8–3.7 in 72%, 3.8–5.7 in 20.0%, and 5.8–11 msec in 8.0% of neurons. The latent period of responses beginning with an EPSP was 1–4 msec (mean 1.8 msec). Orthodromic responses arising 3–10 msec after the antidromic response, and consisting of 3–5 spikes, were recorded in some antidromically excited neurons. Hypotheses regarding the functional organization of the auditory cortex and mechanisms of inhibition in its neurons are put forward on the basis of the results obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 227–235, May–June, 1972.  相似文献   

19.
The latent periods, amplitude, and duration of IPSPs arising in neurons in different parts of the cat cortex in response to afferent stimuli, stimulation of thalamocortical fibers, and intracortical microstimulation are described. The duration of IPSPs evoked in cortical neurons in response to single afferent stimuli varied from 20 to 250 msec (most common frequency 30–60 msec). During intracortical microstimulation of the auditory cortex, IPSPs with a duration of 5–10 msec also appeared. Barbiturates and chloralose increased the duration of the IPSPs to 300–500 msec. The latent period of 73% of IPSPs arising in auditory cortical neurons in response to stimulation of thalamocortical fibers was 1.2 msec longer than the latent period of monosynaptic EPSPs evoked in the same way. It is concluded from these data that inhibition arising in most neurons of cortical projection areas as a result of the arrival of corresponding afferent impulsation is direct afferent inhibition involving the participation of cortical inhibitory interneurons. A mechanism of recurrent inhibition takes part in the development of inhibition in a certain proportion of neurons. IPSPs arise monosynaptically in 2% of cells. A study of responses of cortical neurons to intracortical microstimulation showed that synaptic delay of IPSPs in these cells is 0.3–0.4 msec. The length of axons of inhibitory neurons in layer IV of the auditory cortex reaches 1.5 mm. The velocity of spread of excitation along these axons is 1.6–2.8 msec (mean 2.2 msec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 394–403, May–June, 1984.  相似文献   

20.
Responses of neurons of motor cortex evoked by stimulations of pyramidal tract (PT) and ventroposterolateral (VPL) nucleus of thalamus were studied in cats immobilized by Myorelaxin. Antidromic spikes were found in 22.6% and in 9.9% of cortical cells when PT and VPL were stimulated, respectively. Fast- and slow-conducting PT-neurones could be differentiated according to antidromic excitation latencies. PT stimulation evoked EPSPs in 46.3% of studied neurones and VPL stimulation--in 48.2% ones. Monosynaptic EPSPs were identified in responses of fast- and slow-conducting PT-units and of neurones projecting in VPL; mechanisms and functional role of such reactions are discussed. Di- and polysynaptic IPSPs were evoked in 74.5% of units by PT stimulation and in 94.4%--by VPL stimulation. Three groups of IPSPs were classified with durations to 120, 130-280 and more than 300 ms. Duration of PT-evoked IPSPs was higher in cortical neurones from surface layers and VPL-evoked ones--in units localized in deep layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号