首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular recordings were made of synaptic responses of 93 motoneurons in the cervical region of the cat spinal cord to stimulation of the medial longitudinal bundle, the brain-stem reticular formation, the lateral vestibular nucleus of Deiters, and the red nucleus. In response to stimulation of the medial longitudinal bundle and the vestibular nucleus responses in the motoneurons of the distal groups of muscles of the forelimb were predominantly excitatory, whereas in motoneurons of the proximal extensor muscles they were predominantly inhibitory. During stimulation of the red nucleus, excitatory and inhibitory responses were recorded in almost equal numbers of cells regardless of their functional class. Monosynaptic EPSPs appeared in one-fifth of motoneurons in response to stimulation of the medial longitudinal bundle and, in a few cases, to stimulation of the vestibular and red nuclei. Otherwise, during stimulation of these structures polysynaptic responses were recorded in the motoneurons. In 62% of cases postsynaptic potentials arising in response to stimulation of the various suprasegmental structures tested were identical in direction in the same motoneurons. A mutually facilitatory effect was observed during stimulation of different suprasegmental inputs. The results are evidence that interaction between influences of the structures tested takes place largely at the level of spinal interneurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 391–399, July–August, 1978.  相似文献   

2.
The distribution of focal potentials over the cross section of the 7th cervical segment of the spinal cord was studied during stimulation of the pyramids, the red nucleus, and a peripheral nerve (ulnar) in adult cats anesthetized with chloralose and Nembutal. The earliest focal potentials in the fasciculus dorsolateralis were recorded 1.4–1.5 msec after stimulation of the pyramids and 0.8–0.9 msec after stimulation of the red nucleus. These times correspond to maximal condution velocities of 56–68 and 105–124 m/sec respectively. The earliest post-synaptic activity in response to pyramidal stimulation was found in the lateral areas of laminae V and VI, and in response to stimulation of the red nucleus in laminae VI and VII in Rexed's classification. The pyramidal wave also evoked considerable postsynaptic activity in medial areas of the dorsal horn. In response to stimulation of peripheral afferents activity was evoked in neurons in the central and medial parts of laminae V and VI. It is postulated on the basis of these results that corticospinal and rubrospinal fibers may be connected monosynaptically with specialized interneurons, free from peripheral influences, in the lateral areas of laminae V and VII respectively; in the lateral part of lamina VI convergence of both types of influences on the same cells is possible. Interaction between descending and afferent influences possibly takes place on more medially located neurons.A.A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 158–167, March–April, 1972.  相似文献   

3.
4.
Convergence of contralateral somatic afferent synaptic influences on segmental inhibitory neurons was investigated by intracellular recording of postsynaptic potentials of -motoneurons in experiments on cats. Excitatory synaptic influences of afferents of the contralateral flexor reflex were shown to converge on interneurons of both segmental inhibitory systems studied: afferents of flexor reflex and group Ia muscle afferents. Interneurons of inhibitory systems are exposed not only to excitatory but also to inhibitory contralateral influences. Contralateral inhibitory PSPs of montoneurons are produced through ipsilateral inhibitory systems; a leading role is played by inhibitory neurons of the flexor reflex system of afferents. Inhibitory neurons of the Ia system as a rule do not make an important contribution to generation of contralateral IPSPs.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 476–484, September–October, 1973.  相似文献   

5.
Galvanic vestibular stimulation (GVS) is a research tool used to activate the vestibular system in human subjects. When a low-intensity stimulus (1-4 mA) is delivered percutaneously to the vestibular nerve, a transient electromyographic response is observed a short time later in lower limb muscles. Typically, galvanically evoked responses are present when the test muscle is actively engaged in controlling standing balance. However, there is evidence to suggest that GVS may be able to modulate the activity of lower limb muscles when subjects are not in a free-standing situation. The purpose of this review is to examine 2 studies from our laboratory that examined the effects of GVS on the lower limb motoneuron pool. For instance, a monopolar monaural galvanic stimulus modified the amplitude of the ipsilateral soleus H-reflex. Furthermore, bipolar binaural GVS significantly altered the onset of activation and the initial firing frequency of gastrocnemius motor units. The following paper examines the effects of GVS on muscles that are not being used to maintain balance. We propose that GVS is modulating motor output by influencing the activity of presynaptic inhibitory mechanisms that act on the motoneuron pool.  相似文献   

6.
7.
Monosynaptic effects evoked by electrical stimulation of suprasegmental structures and the ventral and lateral columns were recorded intracellularly from motoneurons of the lumbar and cervical enlargements after isolation of the spinal cord and medulla in frogs. Reticulospinal fibers arising from cells of the medial reticular formation of the medulla and running in the ventro-lateral columns evoke monosynaptic excitation of cervical and lumbar motoneurons. The reticulo-motoneuronal E PSPs do not exceed 2–3 mV in amplitude and do not reach the threshold for action potential generation. Division of the spinal cord and interaction between all synaptic inputs tested in chronic experiments showed that monosynaptic E PSPs evoked by direct stimulation of the ventral and lateral columns are due to activation of the descending system of propriospinal fibers. By transmembrane polarization experiments the equilibrium potentials of the reticulo-motoneuronal and propriospinal monosynaptic E PSPs could be determined.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 164–173, March–April, 1973.  相似文献   

8.
9.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

10.
Postsynaptic potentials evoked by stimulation of the motor cortex or pyramids before and after acute pyramidotomy were investigated in the lumbar motoneurons of monkeys. In response to activation of fibers of the pyramidal tract monosynaptic EPSPs predominated in motoneurons innervating the distal muscles of the hind limbs. Monosynaptic EPSPs in the motoneurons of the distal muscles had a significantly higher amplitude and could be evoked by weaker stimuli than EPSPs in the motoneurons of the proximal muscles. Cortico-motoneuronal EPSPs in the motoneurons of the distal muscles had a less marked frequency potentiation than EPSPs with monosynaptic segmental delay in the motoneurons of the proximal muscles. Cortico-extrapyramidal synaptic responses appeared in the pyramidotomized monkeys during intensive repetitive stimulation of the motor cortex in motoneurons of both distal and proximal muscles. These effects, transmitted by descending projections of the brain stem, may be responsible for the partial preservation of cortical motor control after pyramidotomy.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 587–596, November–December, 1972.  相似文献   

11.
Composite and unitary EPSPs of red nucleus neurons evoked by stimulation of the sensomotor and association parietal cortex and nucleus interpositus of the cerebellum were studied in acute experiments on cats anesthetized with pentobarbital. A monosynaptic connection was shown to exist between not only the sensomotor, but also the association cortex, and rubrospinal neurons, in which unitary EPSPs appeared during stimulation of the association cortex after a latent period of 1.5–2.7 msec, with a peak rise time of 1.1–3.1 msec and an amplitude of 0.22–0.65 mV. Analysis of the temporal characteristics of the unitary EPSP suggested that synapses formed by fibers from the association cortex occupy a position nearer the soma than synapses formed by axons of sensomotor cortical cells.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 67–74, January–February, 1984.  相似文献   

12.
Intracellular recording was employed in experiments on rats with the nervous system intact and after acute pyramidotomy to study the postsynaptic effects produced in the lumbar motoneurons on stimulation of the nucleus ruber. Stimulation of this nucleus with single stimuli and with a short series of stimuli caused excitatory and inhibitory postsynaptic potentials (EPSP and IPSP) to develop in the motoneurons. Most of the EPSP recorded were disynaptic, but response development involved a monosynaptic segmental delay in five of the 124 cells that exhibited EPSP. A capacity for high-frequency potentiation was a characteristic feature of the disynaptic excitatory and inhibitory effects. Transmembrane polarization of the motoneurons had a marked influence on the amplitude of the disynaptic EPSP and IPSP. The properties of the disynaptic rubrospinal influences were similar to those described for the cat.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 266–273, May–June, 1971.  相似文献   

13.
14.
15.
The interaction of two feedback loops was investigated: one regulating cuticular stress in the stick insect's leg and the other controlling leg posture. Exclusive stimulation of either of the two relevant sense organs, the load-sensitive trochantero-femoral campaniform sensilla (CS) or the position-/movement-sensitive ventral coxal hairplate (cxHPv), elicits resistance reflex responses in the retractor and the protractor coxae motoneuron pools. Concurrent application of both stimulus modalities reveals that the strength of the postural feedback response is dependent on sign and amplitude of the load feedback response and vice versa. This superposition of the two reflex responses appears to be non-linear. The results indicate that the CS information is underlying a force control function in this six-legged animal. It is hypothesized that the force control of each single leg could help to optimize the force distribution of the six-legged system, even - due to the mechanical coupling - without explicit neuronal pathways. On the level of the single leg control it was studied whether the different information provided by the two feedback transducers converge on the level of retractor coxae motoneurons or whether this information is fully preprocessed at the level of premotor interneurons. It is shown here that the hairplate afferents make direct, excitatory connections with the retractor motoneurons. Studies of the motoneurons' membrane conductances during exclusive CS stimulation reveal that both, excitatory as well as inhibitory synaptic drive is delivered onto the retractor motoneurons. Thus, the motoneuronal membrane is shown to be an important stage for the sensor fusion of the two modalities.  相似文献   

16.
Polysialic acid influences specific pathfinding by avian motoneurons.   总被引:6,自引:0,他引:6  
J Tang  L Landmesser  U Rutishauser 《Neuron》1992,8(6):1031-1044
The influence of polysialic acid (PSA) on the neural cell adhesion molecule on motoneuron outgrowth and pathway formation was investigated by determining its temporal and spatial pattern of expression and by the effect that its removal had on motoneuron projection patterns. Motoneurons first expressed PSA as their growth cones began to segregate into motoneuron pool-specific groups in the plexus region; furthermore, PSA levels differed between motoneurons projecting to different targets. When PSA was removed during the period of axonal segregation in the plexus region projection errors were common. However, later removal during the process of muscle nerve formation did not result in projection errors. These results suggest that PSA modulates interactions between motoneuron axons and guidance molecules in the plexus region during axonal pathfinding.  相似文献   

17.
18.
We studied synaptic processes in motoneurons of thoracic segments (TIX-TXI) evoked by stimulation of the medial area of the giant-cell reticular nucleus in decerebrated cats. Monosynaptic EPSP were recorded in the majority of investigated motoneurons upon activation of the most rapidly conducting reticulospinal fibers. In some cells, such monosynaptic EPSP were accompanied by late EPSP or IPSP. Amplitude of monosynaptic EPSP attained 5 mV, but this value usually was insufficient for development of an action potential. Upon summation of single monosynaptic EPSP, the membrane potential reached the critical level and an action potential arose in the motoneuron. The efficiency of summary processes evoked by stimulation of the reticular formation exceeded the intensity of synaptic processes that arise in thoracic motoneurons on stimulating the nucleus of Deiters. Functional characteristics of reticular and vestibular monosynaptic EPSP are discussed in the work.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 243–252, November–December, 1969.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号