首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Solute osmotic potentials (x) in the vessels of hydroponically grown maize roots were measured to assess the osmotic-xylem-sap mechanism for generating root pressure (indicated by guttation). Solutes in vessels were measured in situ by X-ray microanalysis of plants frozen intact while guttating. Osmotic potentials outside the roots (o) were changed by adding polyethylene glycol to the nutrient solution. Guttation rate fell when o was decreased, but recovered towards the control value during 3–5 days when o was greater than or equal to –0.3 MPa, but not when o was equal to –0.4 MPa. In roots stressed to o = –0.3 MPa, x, was always more positive than o, and x changed only slightly (ca. 0.05 MPa). Thus the adjustment in the roots which increased root pressure cannot be ascribed to x, contradicting the osmotic-xylem-sap mechanism. An alternative driving force was sought in the osmotic potentials of the vacuoles of the living cells (v), which were analysed by microanalysis and estimated by plasmolysis. v showed larger responses to osmotic stress (0.1 MPa). Some plants were pretreated with abundant KNO3 in the nutrient solution. These plants showed very large adjustments in v (0.4 MPa) but little change in x (0.08 MPa). They guttated by 4 h after o was lowered to –0.4 MPa. It is argued that turgor pressure of the living cells is a likely alternative source of root pressure. Published evidence for high solute concentrations in the xylem sap is critically assessed.Abbreviations o external water potential - x osmotic potential of xylem sap - v osmotic potential of vacuolar sap - EDX energy dispersive X-ray microanalysis - CSEM cryo-scanning electron microscope - LN2 liquid nitrogen - PEG polyethylene glycol  相似文献   

2.
The maximal growth rate of the marine cyanobacterium Oscillatoria brevis was reached at 200–400 mM NaCl and pH 9.0–9.6. NaCl was found (i) to stimulate the rate of the light-supported generation across the cytoplasmic membrane of the cells and (ii) to decrease the sensitivity of level and motility of the O. brevis trichomes to protonophorous uncouplers. The Na+/H+ antiporter, monensin, increased both and the uncoupler sensitivity of the cells. The data obtained agree with the assumption that O. brevis possesses a primary Na+ pump in its cytoplasmic membrane.Abbreviations ATP adenosine-5-triphosphate - TTFB tetrachlortrifluoromethylimidazol - CCCP carbonyl cyanide m-chlorophenylhydrazone - Na+ transmembrane electrochemical potential differences of Na+ - transmembrane electric potential difference - pNa transmembrane pNa difference  相似文献   

3.
Summary Tetraploid Vaccinium corymbosum genotypes exhibit wide variability in seed set following self- and cross-pollinations. In this paper, a post-zygotic mechanism (seed abortion) under polygenic control is proposed as the basis for fertility differences in this species. A pollen chase experiment indicated that self-pollen tubes fertilize ovules, but are also outcompeted by foreign male gametes in pollen mixtures. Matings among cultivars derived from a pedigree showed a linear decrease in seed number per fruit, and increase in seed abortion, with increasing relatedness among parents. Selfed (S1) progeny from self-fertile parents were largely self-sterile. At zygotic levels of inbreeding of F>0.3 there was little or no fertility, suggesting that an inbreeding threshold regulates reproductive success in V. corymbosum matings. Individuals below the threshold are facultative selfers, while those above it are obligate outcrossers. Inbreeding also caused a decrease in pollen viability, and reduced female fertility more rapidly than male fertility. These phenomena are discussed in terms of two models of genetic load: (1) mutational load — homozygosity for recessive embryolethal or sub-lethal mutations and (2) segregational load — loss of allelic interactions essential for embryonic vigor. Self-infertility in highbush blueberries is placed in the context of late-acting self-incompatibility versus early-acting inbreeding depression in angiosperms.  相似文献   

4.
Turgor (p) and osmotic potential (s) in epidermal and mesophyll cells, in-situ xylem water potential (-xyl) and gas exchange were measured during changes of air humidity and light in leaves ofTradescantia virginiana L., Turgor of single cells was determined using the pressure probe. Sap of individual cells was collected with the probe for measuring the freezing-point depression in a nanoliter osmometer. Turgor pressure was by 0.2 to 0.4 MPa larger in mesophyll cells than in epidermal cells. A water-potential gradient, which was dependent on the rate of transpiration, was found between epidermis and mesophyll and between tip and base of the test leaf. Step changes of humidity or light resulted in changes of epidermal and mesophyll turgor (p-epi, p-mes) and could be correlated with the transpiration rate. Osmotic potential was not affected by a step change of humidity or light. For the humidity-step experiments, stomatal conductance (g) increased with increasing epidermal turgor.g/p-epi appeared to be constant over a wide range of epidermal turgor pressures. In light-step experiments this type of response was not found and stomatal conductance could increase while epidermal turgor decreased.Symbols E transpiration - g leaf conductance - w leaf/air vapour concentration difference - -epi water potential of epidermal cells - -mes water potential of mesophyll cells - -xyl water potential of xylem - p-epi turgor pressure of epidermal cells - p-mes turgor pressure of mesophyll cells - s-epi osmotic potential of epidermal cells - s-mes osmotic potential of mesophyll cells  相似文献   

5.
N. Terry  L. J. Waldron  A. Ulrich 《Planta》1971,97(4):281-289
Summary Sugar beets were subjected to moisture stress by decreasing the water potential of the culture solution osmotically with polyethylene glycol by a known amount, , and, alternatively by applying matric potential, , at the plant roots. Lowering the water potential at the root surface less than 200 millibars by either method resulted in significant decreases in the rate of cell multiplication. The final number of cells per leaf at = -372 mb the final was 165% of that at = -473 mb ( = –101 mb); similarly at = –15 mb the final cell number was 198% of that at = –196 mb ( = –181 mb). The mean cell volume of leaves was not significantly affected by these levels of moisture stress.  相似文献   

6.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant.  相似文献   

7.
Summary Measurements were made of the difference in the electrochemical potential of protons ( ) across the membrane of vesicles reconstituted from the ATPase complex (TF 0 ·F 1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential () and pH difference across the membrane ( pH), respectively.In the presence of Tris buffer the maximal and no pH were produced, while in the presence of the permeant anion NO 3 the maximal pH and a low were produced by the addition of ATP. When the ATP concentration was 0.24mm, the was 140–150 mV (positive inside) in Tris buffer, and the pH was 2.9–3.5 units (acidic inside) in the presence of NO 3 . Addition of a saturating amount of ATP produced somewhat larger and pH values, and the attained was about 310 mV.By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4–5 during ATP hydrolysis.The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

8.
Summary N-Glycolylneuraminic acid (Neu5Gc) has been prepared by enzymatic hydrolysis of its -(28) linked homopolymer. The rate of hydrolysis of the natural poly -(28)-(Neu5Ac) and the semi-synthetic poly -(28)-(Neu5Gc) were compared with the neuraminidases fromClostridium perfringens andVibrio cholerae. The natural Neu5Ac polysaccharide was a better substrate for both enzymes. For comparison, acid hydrolysis of the two polysaccharides showed extensive degradation.  相似文献   

9.
The influence of plant water relations on phloem loading was studied in Ricinus communis L. Phloem transport was maintained in response to bark incisions even at severe water deficits. Water stress was associated with a net increase in the solute content of the sieve tubes, which resulted in maintenance of a positive phloem turgor pressure p. There was a significant increase in solute flux through the phloem with decreasing xylem water potential (). In addition, sugar uptake by leaf discs was examined in media adjusted to different water potentials with either sorbitol (a relatively impermeant solute) or ethylene glycol (a relatively permeant solute). The limitations in this experimental system are discussed. The results nevertheless indicated that sucrose uptake can be stimulated by a reduction in cell p, but that it is little affected by cell or solute potential s. On the basis of these data we suggest that sucrose loading is turgor-pressure dependent. This may provide the mechanism by which transport responds to changes in sink demand in the whole plant.Abbreviations water potential - s solute potential - p pressure potential  相似文献   

10.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

11.
Summary The short term effects of irrigation on diurnal changes in leaf and titratable acidity were examined both inSempervivum montanum and inSedum album, a facultative CAM plant, in the Spanish Pyrenees. InSemperivivum, leaf responded rapidly to irrigation and, in both the control and irrigated plants, increased during the day and decreased during the night and early morning. By contrast, leaf inSedum responded more slowly to irrigation and showed a decrease during the day and an increase in the period between evening and early morning. Under the conditions of the short-term experiments, changes in acid metabolism were not observed in either species following irrigation. The results suggest that transpirational water loss together with redistribution of water within the plant are more important than the osmotic concentration of malic acid in determining leaf in both species and that daytime water loss is greater inSedum than inSempervivum.The effect of long-term water stress on leaf and acid levels was also assessed in both species over a 3-week period. Both leaf and acidification inSempervivum decreased over this time period but could, at least partially, be reversed by irrigation. InSedum, leaf also declined but a more gradual reduction in acidification occurred than inSempervivum. Irrigation inSedum at least partially reversed the decline in leaf but produced a complex pattern of acid metabolism. Nocturnal acidification in the irrigated plants was lower than in the non-irrigated control when preceded by a cool day but showed complete recovery following a hot day. It is suggested inSedum album that C3 photosynthesis during the preceding light period, as determined by light intensity and leaf temperature, may be important in determining the extent of nocturnal acidification under field conditions.  相似文献   

12.
A new method for cytofluorometric analysis of mitochondrial membrane potential has been developed by using TMRM as a cationic, mitochondrial selective probe. The method is based on limited treatment of cultured cells with digitonin which permeabilises the plasma membrane and leaves mitochondria intact. The resulting signal of TMRM-stained cells thus represents only the probe accumulated in mitochondria. Fibroblasts and cybrids were used as a model cell systems and optimal conditions for digitonin treatment and staining by TMRM were described. The TMRM signal collapsed by valinomycin, KCN and antimycin A and FCCP titration was used to gradually lower and characterise the stability of . The method is suitable for sensitive measurement of in different types of cultured cells.  相似文献   

13.
Hubert Felle 《Planta》1981,152(6):505-512
In the aquatic liverwort Riccia fluitans, membrane depolarization (m), change in membrane conductance (gm), and current-voltage (I-V) characteristics in the presence of different amino acids as well as the uptake of 14C-labeled amino acids were measured. L-isomers of the tested amino acids generate larger electrical effects (m, gm) than D-isomers, and the I-V characteristics show that the positive electrical inward-current of 20 mA m-2 generated by 0.5 mM D-serine is only about 50% of the current generated by adding 0.5 mM L-serine. Whereas - and -amino acids rapidly depolarize the membrane to the same extend, with -aminobutyric acid (-AB) and dipeptides no significant electrical effects have been measured. The uptake kinetics of 14C-labeled amino acids display three components: (I) A saturable high-affinity component with Ks-values of 48 M D-alanine, 12 M -aminoisobutyric acid (AIB), 9 M L-alanine, 8 M L-proline, and 6 M L-serine, respectively; (2) an apparently linear low-affinity component, and (3) an also linear but unspecific component at concentrations >20 times the given Ks-value. Uptake of 14C-labeled AIB can be inhibited competitively by all tested neutral amino acids, the L-isomers being more effective than the D-isomers, as well as by ammonium or methylamine. Vice versa, AIB competitively inhibits uptake of L-serine and L-alanine. It is concluded that an uncharged stereospecific carrier for the investigated amino acids exists in the plasmalemma of Riccia fluitans. Accumulation ratios of about 50 suggest secondary active transport driven by a transmembrane electro-chemical gradient (mainly m) which is generated by the electrogenic proton pump. It is suggested that this carrier binds to the amino group forming either a charged binary complex with positively charged amines (Felle 1980), or an uncharged complex with -AB or dipeptides, whereas electrogenic transport of - and -amino acids is mediated by a ternary carrier complex, probably charged by a proton.Symbols and Abbreviations m membrane potential (mV) - Eco equilibrium potential (mV) of the transport system - gm membrane (slope) conductance (Sm-2) - gm change in gm - I-V curve current-voltage curve - AIB -aminoisobutytric acid - -AB -aminobutyric acid  相似文献   

14.
In order to study the effect of glycosylation on its biological activities and to develop IL-1 with less deleterious effects, N-acetylneuraminic acid (NeuAc) with C9 spacer was chemically coupled to human recombinant IL-1. NeuAc-coupled IL-1 (NeuAc-IL-1) exhibited reduced activities in vitro and receptor-binding affinities by about ten times compared to IL-1. In this study, we examined a variety of IL-1 activities in vivo. NeuAc-IL-1 exhibited a marked reduction in the activity to up-regulate serum IL-6, moderate reduction in the activities to up-regulate serum amyloid A and NOx. However, it exhibited comparable activities as IL-1 to down-regulate serum glucose and to improve the recovery of peripheral white blood cells from myelosuppression in 5-fluorouracil-treated mice. In addition, tissue level of NeuAc-IL-1 was high compared to IL-1. These results indicate that coupling with NeuAc enabled us to develop neo-IL-1 with selective activities in vivo and enhanced tissue level.  相似文献   

15.
Tezara  W.  Fernández  M.D.  Donoso  C.  Herrera  A. 《Photosynthetica》1998,35(3):399-410
In order to determine whether stomatal closure alone regulates photosynthesis during drought under natural conditions, seasonal changes in leaf gas exchange were studied in plants of five species differing in life form and carbon fixation pathway growing in a thorn scrub in Venezuela. The species were: Ipomoea carnea, Jatropha gossypifolia, (C3 deciduous shrubs), Alternanthera crucis (C4 deciduous herb), and Prosopis juliflora and Capparis odoratissima (evergreen phreatophytic trees). Xylem water potential () of all species followed very roughly the precipitation pattern, being more closely governed by soil water content in I. carnea and A. crucis. Maximum rate of photosynthesis, Pmax, decreased with in I. carnea, J. gossypifolia, and A. crucis. In I. carnea and J. gossypifolia stomatal closure was responsible for a 90 % decline in net photosynthetic rate (PN) as decreased from -0.3 to -2.0 MPa, since stomatal conductance (gs) was sensitive to water stress, and stomatal limitation on PN increased with drought. In A. crucis, PN decreased by 90 % at a much lower (-9.3 MPa), and gs was relatively less sensitive to . In P. juliflora and C. odoratissima, Pmax, gs, and intercellular CO2 concentration (Ci) were independent of soil water content. In the C3 shrubs stomatal closure was apparently the main constraint on photosynthesis during drought, Ci declining with in I. carnea. In the C4 herb, Ci was constant along the range of values, which suggested a coordinated decrease in both gs and mesophyll capacity. In P. juliflora Ci showed a slow decrease with which may have been due to seasonal leaf developmental changes, rather than to soil water availability.  相似文献   

16.
Summary Over several days at permanently low plant water status in the field, where predawn xylem pressures () were never higher (less negative) than –1.2 MPa even after extended rain, leaf conductances (g) and transpiration rates of host trees, Eucalyptus behriana F. Muell., were higher than in mistletoes, Amyema miquelii (Lehm. ex Miq.) Tiegh., which contrasts with most studies known from the literature. Mistletoes influenced but not g of host leaves distal to the haustorium. Releasing xylem tension by cutting a host stem under water raised from about –3.5 MPa to about –0.5 MPa in both plants indicating that factors in the root zone were responsible for the low in the host. In all cases, with a freely transpiring or non-transpiring parasite at low and at artificially raised , mistletoe xylem pressure was lower than that of the host. Possible reasons are discussed.  相似文献   

17.
of whole cells of Methanobacterium thermoautotrophicum was estimated under varying conditions using an electrode sensitive to the lipophilic cation tetraphenylphosphonium chloride (TPP+). Since was found to be extremely sensitive to air, a special reaction vessel was developed to maintain strict anaerobiosis. The cells took up TPP+ under energization by H2 and CO2 thus allowing to calculate the from the distribution of TPP+ inside and outside the cells. The unspecific uptake of deenergized cells was around 10% of the total uptake of energized cells. TPP+ itself slightly diminished the , but had no effect on the formation of methane. Typical values of were in the range of-150 to-200 mV. showed a quantitative dependence on both the electron donor H2 and the electron acceptor CO2. NaCl stimulated the extent of the , whereas KCl slightly diminished it. Valinomycin resulted in a linear decline of , whereas the methane production rate was only slightly affected. In contrast, monensin reduced both methanogenesis and .Abbreviations pmf proton motive force - membrane potential - TPP+ tetraphenylphosphonium (chloride salt) - TPMP+ triphenylmethylphosphonium (chloride salt, if not otherwise indicated) - d.w. dry weight - t d doubling time - PVC polyvinylchloride  相似文献   

18.
Summary The degree of winter desiccation resistance exhibited by Larix lyallii Parl. was assessed by determination of water potential components and content of buds, xylem pressure potential ( xylem) of twigs and amount of damage through winter at timberline in the Rocky Mountains of Canada. Comparative measurements were made on sympatric evergreen tree species to evaluate differences in winter desiccation avoidance and tolerance between evergreen and deciduous trees. Total () and osmotic plus matric potentials ( + ) of L. lyallii buds were lowest in December (-5.0 to-5.3 MPa and-6.6 to-7.0 MPa, respectively) when temperatures were lowest. Bud and water content increased in late winter while xylem of twigs continued to decline until March. The buds were isolated from the xylem from October through February, as indicated by large differences in water potential between the two organs during this time. Buds thus avoided desiccation as water was lost from the twigs. At the same time the buds were tolerant of very low and + , a characteristic which is an important component of freezing damage resistance. Desiccation damage to buds of L. lyallii was much less than that to buds of similar-sized nearby trees of Abies lasiocarpa, although xylem of both species was similar. The deciduous habit apparently confers a significant advantate to L. lyallii, which dominated the upper timberline sites, in reduced susceptibility to winter desiccation damage. Other deciduous timberline species might also benefit from this advantage where winter conditions are desiccating.Seedlings of L. lyallii were also studded for their winter desiccation resistance because they have a large component of non-deciduous (wintergreen) needles that are photosynthetically active through two growing seasons and must overwinter as mature tissue. Experimental exposure of these needles, which are normally protected by the snowpack, caused nearly complete mortality of the wintergreen needles when twig xylem was only-3.9 MPa. The buds on these twigs were undamaged.  相似文献   

19.
The objective of this study was to determine how adjustment in stomatal conductance (g s) and turgor loss point (tlp) between riparian (wet) and neighboring slope (dry) populations of Acer grandidentum Nutt. was associated with the susceptibility of root versus stem xylem to embolism. Over two summers of study (1993–1994), the slope site had substantially lower xylem pressures (px) and g s than the riparian site, particularly during the drought year of 1994. The tlp was also lower at the slope (-2.9±0.1 MPa; all errors 95% confidence limits) than at riparian sites (-1.9±0.2 MPa); but it did not drop in response to the 1994 drought. Stem xylem did not differ in vulnerability to embolism between sites. Although slope-site stems lost a greater percentage of hydraulic conductance to embolism than riparian stems during the 1994 drought (46±11% versus 27±3%), they still maintained a safety margin of at least 1.7 MPa between midday px and the critical pressure triggering catastrophic xylem embolism (pxCT). Root xylem was more susceptible to embolism than stem xylem, and there were significant differences between sites: riparian roots were completely cavitated at -1.75 MPa, compared with -2.75 MPa for slope roots. Vulnerability to embolism was related to pore sizes in intervessel pit membranes and bore no simple relationship to vessel diameter. Safety margins from pxCT averaged less than 0.6 MPa in roots at both the riparian and slope sites. Minimal safety margins at the slope site during the drought of 1994 may have led to the almost complete closure of stomata (g s=9±2 versus 79±15 mmol m-2 s-1 at riparian site) and made any further osmotic adjustment of tlp non-adaptive. Embolism in roots was at least partially reversed after fall rains. Although catastrophic embolism in roots may limit the minimum for gas exchange, partial (and reversible) root embolism may be adaptive in limiting water use as soil water is exhausted.  相似文献   

20.
Summary Bud break, shoot growth and flowering of trees involve cell expansion, known to be inhibited by moderate water deficits. In apparent contradiction to physiological theory, many trees flower or exchange leaves during the 6 month-long, severe dry season in the tropical dry forest of Guanacaste, Costa Rica. To explore this paradox, changes in tree water status during the dry season were monitored in numerous trees. Water potential of stem tissues (stem) was obtained by a modification of the pressure chamber technique, in which xylem tension was released by cutting defoliated branch samples at both ends. During the early dry season twigs bearing old, senescent leaves generally had a low leaf water potential (leaf), while stem varied with water availability. At dry sites, stem was very low in hardwood trees (<–4 MPa), but near saturation (>–0.2 MPa) in lightwood trees storing water with osmotic potentials between –0.8 and –2.1 MPa. At moist sites trees bearing old leaves rehydrated during drought; their stem increased from low values (<–3 MPa) to near saturation, resulting in differences of 3–4 MPa between stem and leaf. Indirect evidence indicates that rehydration resulted from osmotic adjustment of stem tissues and improved water availability due to extension of roots into moist subsoil layers. In confirmation of physiological theory, elimination of xylem tension by leaf shedding and establishment of a high solute content and high stem were prerequisites for flowering and bud break during drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号