首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The D1/D2 domains of large subunit (LSU) rDNA have commonly been used for phylogenetic analyses of dinoflagellates; however, their properties have not been evaluated in relation to other D domains due to a deficiency of complete sequences. This study reports the complete LSU rRNA gene sequence in the causative unarmored dinoflagellate Cochlodinium polykrikoides, a member of the order Gymnodiniales, and evaluated the segmented domains and secondary structures when compared with its relatives. Putative LSU rRNA coding regions were recorded to be 3433 bp in length (49.0% GC content). A secondary structure predicted from the LSU and 5.8S rRNAs and parsimony analyses showed that most variation in the LSU rDNA was found in the 12 divergent (D) domains. In particular, the D2 domain was the most informative in terms of recent evolutional and taxonomic aspects, when compared with both the phylogenetic tree topologies and molecular distance (approximately 10 times higher) of the core LSU. Phylogenetic analysis was performed with a matrix of LSU DNA sequences selected from domains D2 to D4 and their flanking core sequences, which showed that C. polykrikoides was placed on the same branch with Akashiwo sanguinea in the “GPP” complex, which is referred to the gymnodinioid, peridinioid and prorocentroid groups. A broad phylogeny showed that armored and unarmored dinoflagellates were never clustered together; instead, they were clearly divided into two groups: the GPP complex and Gonyaulacales. The members of Gymnodiniales were always interspersed with peridinioid, prorocentroid and dinophysoid forms. This supports previous findings showing that the Gymnodiniales are polyphyletic. This study highlights the proper selection of LSU rDNA molecules for molecular phylogeny and signatures.  相似文献   

2.
Ciliates are single‐cell eukaryotes playing important roles in various ecosystems. Phylogenetic relationships within Hypotricha, one of the most polymorphic and highly derived ciliate groups, remain uncertain. Previous studies suggested that low genetic divergence might be the reason for poorly supported SSU rDNA tree topologies, despite the high morphological diversity of this group. In this study, we substantially increase the number of available hypotrich LSU rDNA gene sequences by the addition of 857 environmental sequences, and we investigate whether a more divergent gene and dense taxon sampling could better resolve the phylogeny of Hypotricha and shed light on the patterns of ecological transitions in the evolutionary history of the group. Pairwise distances of LSU rDNA sequences are generally higher than those for SSU rDNA within each order of Hypotricha, and both concatenated rDNA and LSU rDNA trees provide more resolution for hypotrich phylogenetics. Three traditional (morphology based) hypotrich orders, Stichotrichida, Sporadotrichida and Urostylida, are polyphyletic, but a monophyletic core Urostylida are found in our trees. A brackish/marine environment is inferred as ancestral within Hypotricha, with subsequent ecological diversification into freshwater, soil environments before the origin of major clades and some transitions back to the marine. However, inferred ecological transitions in Hypotricha are influenced by genes, methods and taxa.  相似文献   

3.
According to base pairing, the rRNA folds into corresponding secondary structures, which contain additional phylogenetic information. On the basis of sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2 and 28S rDNA) of Demodex, we predicted the secondary structure of the complete rDNA sequence (18S, 5.8S, and 28S rDNA) of Demodex folliculorum, which was in concordance with that of the main arthropod lineages in past studies. And together with the sequence data from GenBank, we also predicted the secondary structures of divergent domains in SSU rRNA of 51 species and in LSU rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea and Ixodoidea). The multiple alignment among the four superfamilies in Acari showed that, insertions from Tetranychoidea SSU rRNA formed two newly proposed helixes, and helix c3-2b of LSU rRNA was absent in Demodex (Cheyletoidea) taxa. Generally speaking, LSU rRNA presented more remarkable differences than SSU rRNA did, mainly in D2, D3, D5, D7a, D7b, D8 and D10.  相似文献   

4.
Resolution of the phylogenetic relationships among the major eukaryotic groups is one of the most important problems in evolutionary biology that is still only partially solved. This task was initially addressed using a single marker, the small-subunit ribosomal DNA (SSU rDNA), although in recent years it has been shown that it does not contain enough phylogenetic information to robustly resolve global eukaryotic phylogeny. This has prompted the use of multi-gene analyses, especially in the form of long concatenations of numerous conserved protein sequences. However, this approach is severely limited by the small number of taxa for which such a large number of protein sequences is available today. We have explored the alternative approach of using only two markers but a large taxonomic sampling, by analysing a combination of SSU and large-subunit (LSU) rDNA sequences. This strategy allows also the incorporation of sequences from non-cultivated protists, e.g., Radiozoa (=radiolaria minus Phaeodarea). We provide the first LSU rRNA sequences for Heliozoa, Apusozoa (both Apusomonadida and Ancyromonadida), Cercozoa and Radiozoa. Our Bayesian and maximum likelihood analyses for 91 eukaryotic combined SSU+LSU sequences yielded much stronger support than hitherto for the supergroup Rhizaria (Cercozoa plus Radiozoa plus Foraminifera) and several well-recognised groups and also for other problematic clades, such as the Retaria (Radiozoa plus Foraminifera) and, with more moderate support, the Excavata. Within opisthokonts, the combined tree strongly confirms that the filose amoebae Nuclearia are sisters to Fungi whereas other Choanozoa are sisters to animals. The position of some bikont taxa, notably Heliozoa and Apusozoa, remains unresolved. However, our combined trees suggest a more deeply diverging position for Ancyromonas, and perhaps also Apusomonas, than for other bikonts, suggesting that apusozoan zooflagellates may be central for understanding the early evolution of this huge eukaryotic group. Multiple protein sequences will be needed fully to resolve basal bikont phylogeny. Nonetheless, our results suggest that combined SSU+LSU rDNA phylogenies can help to resolve several ambiguous regions of the eukaryotic tree and identify key taxa for subsequent multi-gene analyses.  相似文献   

5.
Abstract: The nuclear LSU rRNA gene was examined in order to evaluate the current phylogeny of ascomycetes, which is mainly based on nuclear SSU rRNA data. Partial LSU rRNA gene sequences of 19 ascomycetes were determined and aligned with the corresponding sequences of 13 other ascomycetes retrieved from Genbank, including all classes traditionally distinguished and most of the recently accepted classes. The classification based on SSU rDNA data and morphological characters is supported, while the traditional classification and classifications based on the ascus type are rejected. Ascomycetes with perithecia and cleistothecia form monophyletic groups, while the discomycetes are a paraphyletic assemblage. The Pezizales are basal to all other filamentous ascomycetes. The monophyly of Loculoascomycetes is uncertain. The results of the LSU rDNA analysis agree with those of the SSU rDNA and RPB2 gene analyses, suggesting that most classes circumscribed in the filamentous ascomycetes are monophyletic. The branching order and relationships among these classes, however, cannot be elucidated with any of these data sets.  相似文献   

6.
Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences   总被引:2,自引:0,他引:2  
We analyzed the large subunit ribosomal RNA (rRNA) gene [LSU ribosomal DNA (rDNA)] as a phylogenetic marker for arbuscular mycorrhizal (AM) fungal taxonomy. Partial LSU rDNA sequences were obtained from ten AM fungal isolates, comprising seven species, with two new primers designed for Glomeromycota LSU rDNA. The sequences, together with 58 sequences available from the databases, represented 31 AM fungal species. Neighbor joining and parsimony analyses were performed with the aim of evaluating the potential of the LSU rDNA for phylogenetic resolution. The resulting trees indicated that Archaeosporaceae are a basal group in Glomeromycota, Acaulosporaceae and Gigasporaceae belong to the same clade, while Glomeraceae are polyphyletic. The results support data obtained with the small subunit (SSU) rRNA gene, demonstrating that the LSU rRNA gene is a useful molecular marker for clarifying taxonomic and phylogenetic relationships in Glomeromycota.  相似文献   

7.
The Sordariomycetes is an important group of fungi whose taxonomic relationships and classification is obscure. There is presently no multi-gene molecular phylogeny that addresses evolutionary relationships among different classes and orders. In this study, phylogenetic analyses with a broad taxon sampling of the Sordariomycetes were conducted to evaluate the utility of four gene regions (LSU rDNA, SSU rDNA, beta-tubulin and RPB2) for inferring evolutionary relationships at different taxonomic ranks. Single and multi-gene genealogies inferred from Bayesian and Maximum Parsimony analyses were compared in individual and combined datasets. At the subclass level, SSU rDNA phylogenies demonstrate their utility as a marker to infer phylogenetic relationships at higher levels. All analyses with SSU rDNA alone, combined LSU rDNA and SSU rDNA, and the combined 28 S rDNA, SSU rDNA and RPB2 datasets resulted in three subclasses: Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae, which correspond well to established morphological classification schemes. At the ordinal level, the best resolved phylogeny was obtained from the combined LSU rDNA and SSU rDNA datasets. Individually, the RPB2 gene dataset resulted in significantly higher number of parsimony informative characters. Our results supported the recent separation of Boliniaceae, Chaetosphaeriaceae and Coniochaetaceae from Sordariales and placement of Coronophorales in Hypocreomycetidae. Microascales was found to be paraphyletic and Ceratocystis is phylogenetically associated to Faurelina, while Microascus and Petriella formed another clade and basal to other members of Halosphaeriales. In addition, the order Lulworthiales does not appear to fit in any of the three subclasses. Congruence between morphological and molecular classification schemes is discussed.  相似文献   

8.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

9.
Interrelationships of the tapeworms (Platyhelminthes: Cestoda) were examined by use of small (SSU) and large (LSU) subunit ribosomal DNA sequences and morphological characters. Fifty new complete SSU sequences were added to 21 sequences previously determined, and 71 new LSU (D1-D3) sequences were determined for the complementary set of taxa representing each of the major lineages of cestodes as currently understood. New sequences were determined for three amphilinidean taxa, but were removed from both alignments due to their excessively high degree of divergence from other cestode sequences. A morphological character matrix coded for supraspecific taxa was constructed by the modification of matrices from recently published studies. Maximum-parsimony (MP) analyses were performed on the LSU, SSU, LSU+SSU, and morphological data partitions, and minimum-evolution (ME) analyses utilizing a general time reversible model of nucleotide substitution including estimates of among-site rate heterogeneity were performed on the molecular data partitions. Resulting topologies were rooted at the node separating the Gyrocotylidea from the Eucestoda. The LSU data were found to be more informative than the SSU data and were more consistent with inferences from morphology, although nodal support was generally weak for most basal nodes. One class of transitions was found to be saturated for comparisons between the most distantly related taxa (gyrocotylideans vs cyclophyllideans and tetrabothriideans). Differences in the topologies resulting from MP and ME analyses were not statistically significant. Nonstrobilate orders formed the basal lineages of trees resulting from analysis of LSU data and morphology. Difossate orders were basal to tetrafossate orders, the latter of which formed a strongly supported clade. A clade including the orders Cyclophyllidea, Nippotaeniidea, and Tetrabothriidea was supported by all data partitions and methods of analysis. Paraphyly of the orders Pseudophyllidea, Tetraphyllidea, and Trypanorhyncha was consistent among the molecular data partitions. Inferences are made regarding a monozoic (nonsegmented) origin of the Eucestoda as represented by the Caryophyllidea and for the evolution of the strobilate and acetabulate/tetrafossate conditions having evolved in a stepwise pattern.  相似文献   

10.
11.
We investigated evolutionary relationships among deuterostome subgroups by obtaining nearly complete large-subunit ribosomal RNA (LSU rRNA)-gene sequences for 14 deuterostomes and 3 protostomes and complete small-subunit (SSU) rRNA-gene sequences for five of these animals. With the addition of previously published sequences, we compared 28 taxa using three different data sets (LSU only, SSU only, and combined LSU + SSU) under minimum evolution (with LogDet distances), maximum likelihood, and maximum parsimony optimality criteria. Additionally, we analyzed the combined LSU + SSU sequences with spectral analysis of LogDet distances, a technique that measures the amount of support and conflict within the data for every possible grouping of taxa. Overall, we found that (1) the LSU genes produced a tree very similar to the SSU gene tree, (2) adding LSU to SSU sequences strengthened the bootstrap support for many groups above the SSU-only values (e.g., hemichordates plus echinoderms as Ambulacraria; lancelets as the sister group to vertebrates), (3) LSU sequences did not support SSU-based hypotheses of pterobranchs evolving from enteropneusts and thaliaceans evolving from ascidians, and (4) the combined LSU + SSU data are ambiguous about the monophyly of chordates. No tree-building algorithm united urochordates conclusively with other chordates, although spectral analysis did so, providing our only evidence for chordate monophyly. With spectral analysis, we also evaluated several major hypotheses of deuterostome phylogeny that were constructed from morphological, embryological, and paleontological evidence. Our rRNA-gene analysis refutes most of these hypotheses and thus advocates a rethinking of chordate and vertebrate origins.  相似文献   

12.
The phylogeny of the Myxosporea was studied using the small-subunit ribosomal RNA gene sequences. Maximum parsimony and Bayesian inference were used to determine myxosporean phylogenetic relationships. The analysis included 120 myxosporean sequences retrieved from GenBank and 21 newly obtained sequences of myxosporeans representing nine genera. Members of the genera Palliatus and Auerbachia were sequenced for the first time. The phylogenetic analysis supported a split of myxosporeans into two main lineages separating most of freshwater species from marine ones as described by previous authors. In addition to the two main lineages, a third lineage consisting of three species was found (Sphaerospora truttae, Sphaerospora elegans and Leptotheca ranae) and additional exceptions to the marine/freshwater myxosporean split were recognised (Sphaeromyxa hellandi, Sphaeromyxa longa and Myxidium coryphaenoideum). All three myxosporean lineages were characterised by specific lengths of SSU rDNA sequences. The lineage of marine myxosporeans split into five well-defined clades. They consisted of species with a similar site of infection and spore morphology and were referred as the Parvicapsula clade, the Enteromyxum clade, the Ceratomyxa clade, the marine Myxidium clade and the Kudoa clade, respectively. The inner topology of the freshwater clade was more complex but the trend to branch according to site of infection was observed in this clade as well. Due to the number of sequences available, a histozoic (Myxobolus clade) predominated. Interestingly, five morphologically different species infecting urinary bladder clustered within the histozoic (Myxobolus) clade. The phylogenetic trees derived from this study differ in a number of respects from the current taxonomy of the myxosporeans, which suggests that several currently utilised characters may be homoplasious or that reliance on a single gene tree may not adequately reflect the phylogeny of the group.  相似文献   

13.
14.
The Mollusca represent one of the most morphologically diverse animal phyla, prompting a variety of hypotheses on relationships between the major lineages within the phylum based upon morphological, developmental, and paleontological data. Analyses of small-ribosomal RNA (SSU rRNA) gene sequence have provided limited resolution of higher-level relationships within the Mollusca. Recent analyses suggest large-subunit (LSU) rRNA gene sequences are useful in resolving deep-level metazoan relationships, particularly when combined with SSU sequence. To this end, LSU (approximately 3.5 kb in length) and SSU (approximately 2 kb) sequences were collected for 33 taxa representing the major lineages within the Mollusca to improve resolution of intraphyletic relationships. Although the LSU and combined LSU+SSU datasets appear to hold potential for resolving branching order within the recognized molluscan classes, low bootstrap support was found for relationships between the major lineages within the Mollusca. LSU+SSU sequences also showed significant levels of rate heterogeneity between molluscan lineages. The Polyplacophora, Gastropoda, and Cephalopoda were each recovered as monophyletic clades with the LSU+SSU dataset. While the Bivalvia were not recovered as monophyletic clade in analyses of the SSU, LSU, or LSU+SSU, the Shimodaira-Hasegawa test showed that likelihood scores for these results did not differ significantly from topologies where the Bivalvia were monophyletic. Analyses of LSU sequences strongly contradict the widely accepted Diasoma hypotheses that bivalves and scaphopods are closely related to one another. The data are consistent with recent morphological and SSU analyses suggesting scaphopods are more closely related to gastropods and cephalopods than to bivalves. The dataset also presents the first published DNA sequences from a neomeniomorph aplacophoran, a group considered critical to our understanding of the origin and early radiation of the Mollusca.  相似文献   

15.
Improving the analysis of dinoflagellate phylogeny based on rDNA   总被引:2,自引:0,他引:2  
Phylogenetic studies of dinoflagellates are often conducted using rDNA sequences. In analyses to date, the monophyly of some of the major lineages of dinoflagellates remain to be demonstrated. There are several reasons for this uncertainty, one of which may be the use of models of evolution that may not closely fit the data. We constructed and examined alignments of SSU and partial LSU rRNA along with a concatenated alignment of the two molecules. The alignments showed several characteristics that may confound phylogeny reconstruction: paired helix (stem) regions that contain non-independently evolving sites, high levels of compositional heterogeneity among some of the sequences, high levels of incompatibility (homoplasy), and rate heterogeneity among sites. Taking into account these confounding factors, we analysed the data and found that the Gonyaulacales, a well-supported clade, may be the most recently diverged order. Other supported orders were, in the analysis based on SSU, the Suessiales and the Dinophysiales; however, the Gymnodiniales and Prorocentrales appeared to be polyphyletic. The Peridiniales without Heterocapsa species appeared as a monophyletic group in the analysis based on LSU; however, the support was low. The concatenated alignment did not provide a better phylogenetic resolution than the single gene alignments.  相似文献   

16.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

17.
Molecular phylogeny of the Siphonocladales (Chlorophyta: Cladophorophyceae)   总被引:5,自引:2,他引:3  
The Siphonocladales are tropical to warm-temperate, marine green macro-algae characterized by a wide variety of thallus morphologies, ranging from branched filaments to pseudo-parenchymatous plants. Phylogenetic analyses of partial large subunit (LSU) rDNA sequences sampled from 166 isolates revealed nine well-supported siphonocladalean clades. Analyses of a concatenated dataset of small subunit (SSU) and partial LSU rDNA sequences greatly clarified the phylogeny of the Siphonocladales. However, the position of the root of the Siphonocladales could not be determined unambiguously, as outgroup rooting and molecular clock rooting resulted in a different root placement. Different phylogenetic methods (likelihood, parsimony and distance) yielded similar tree topologies with comparable internal node resolution. Likewise, analyses under more realistic models of sequence evolution, taking into account differences in evolution between stem and loop regions of rRNA, did not differ markedly from analyses using standard four-state models. The molecular phylogeny revealed that all siphonocladalean architectures may be derived from a single Cladophora-like ancestor. Parallel and convergent evolution of various morphological characters (including those traditionally employed to circumscribe the families and genera) have occurred in the Siphonocladales. Consequently, incongruence with traditional classifications, including non-monophyly in all families and most genera, was shown.  相似文献   

18.
Diatoms have been classified historically as either centric or pennate based on a number of features, cell outline foremost among them. The consensus among nearly every estimate of the diatom phylogeny is that the traditional pennate diatoms (Pennales) constitute a well‐supported clade, whereas centric diatoms do not. The problem with the centric–pennate classification was highlighted by some recent analyses concerning the phylogenetic position of Toxarium, whereby it was concluded that this “centric” diatom independently evolved several pennate‐like characters including an elongate, pennate‐like cell outline. We performed several phylogenetic analyses to test the hypothesis that Toxarium evolved its elongate shape independently from Pennales. First, we reanalyzed the original data set used to infer the phylogenetic position of Toxarium and found that a more thorough heuristic search was necessary to find the optimal tree. Second, we aligned 181 diatom and eight outgroup SSU rDNA sequences to maximize the juxtapositioning of similar primary and secondary structure of the 18S rRNA molecule over a much broader sampling of diatoms. We then performed a number of phylogenetic analyses purposely based on disparate sets of assumptions and found that none of these analyses supported the conclusion that Toxarium acquired its pennate‐like outline independently from Pennales. Our results suggest that elongate outline is congruent with SSU rDNA data and may be synapomorphic for a larger, more inclusive clade than the traditional Pennales.  相似文献   

19.
The genus Alexandrium includes organisms of interest, both for the study of dinoflagellate evolution and for their impacts as toxic algae affecting human health and fisheries. Only partial large subunit (LSU) rDNA sequences of Alexandrium and other dinoflagellates are available, although they contain much genetic information. Here, we report complete LSU rDNA sequences from 11 strains of Alexandrium, including Alexandrium affine, Alexandrium catenella, Alexandrium fundyense, Alexandrium minutum, and Alexandrium tamarense, and discuss their segmented domains and structure. Putative LSU rRNA coding regions were recorded to be around 3,400 bp long. Their GC content (about 43.7%) is among the lowest when compared with other organisms. Furthermore, no AT-rich regions were found in Alexandrium LSU rDNA, although a low GC content was recorded within the LSU rDNA. No intron-like sequences were found. The secondary structure of the LSU rDNA and parsimony analyses showed that most variation in LSU rDNA is found in the divergent (D) domains with the D2 region being the most informative. This high D domain variability can allow members of the diverse Alexandrium genus to be categorized at the species level. In addition, phylogenetic analysis of the alveolate group using the complete LSU sequences strongly supported previous findings that the dinoflagellates and apicomplexans form a clade.  相似文献   

20.

Background  

Plastid-bearing cryptophytes like Cryptomonas contain four genomes in a cell, the nucleus, the nucleomorph, the plastid genome and the mitochondrial genome. Comparative phylogenetic analyses encompassing DNA sequences from three different genomes were performed on nineteen photosynthetic and four colorless Cryptomonas strains. Twenty-three rbc L genes and fourteen nuclear SSU rDNA sequences were newly sequenced to examine the impact of photosynthesis loss on codon usage in the rbc L genes, and to compare the rbc L gene phylogeny in terms of tree topology and evolutionary rates with phylogenies inferred from nuclear ribosomal DNA (concatenated SSU rDNA, ITS2 and partial LSU rDNA), and nucleomorph SSU rDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号