首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin K quinone was shown to be an effective inhibitor of vitamin K epoxide reduction by whole rat liver microsomes. Observation of inhibition was dependent upon the mode of addition of the substrate and inhibitor suggesting segregation of the compounds into different microsomal vesicles under certain conditions. The result is consistent with reduction of both vitamin K quinone and vitamin K epoxide by a single enzyme or a multisite enzyme complex.  相似文献   

2.
We studied FFA (free fatty acid)-induced uncoupling activity in Acanthamoeba castellanii mitochondria in the non-phosphorylating state. Either succinate or external NADH was used as a respiratory substrate to determine the proton conductance curves and the relationships between respiratory rate and the quinone reduction level. Our determinations of the membranous quinone reduction level in non-phosphorylating mitochondria show that activation of UCP (uncoupling protein) activity leads to a PN (purine nucleotide)-sensitive decrease in the quinone redox state. The gradual decrease in the rate of quinone-reducing pathways (using titration of dehydrogenase activities) progressively leads to a full inhibitory effect of GDP on LA (linoleic acid) induced proton conductance. This inhibition cannot be attributed to changes in the membrane potential. Indeed, the lack of GDP inhibitory effect observed when the decrease in respiratory rate is accompanied by an increase in the quinone reduction level (using titration of the quinol-oxidizing pathway) proves that the inhibition by nucleotides can be revealed only for a low quinone redox state. It must be underlined that, in A. castellanii non-phosphorylating mitochondria, the transition of the inhibitory effect of GDP on LA-induced UCP-mediated uncoupling is observed for the same range of quinone reduction levels (between 50% and 40%) as that observed previously for phosphorylating conditions. This observation, drawn from the two different metabolic states of mitochondria, indicates that quinone could affect UCP activity through sensitivity to PNs.  相似文献   

3.
Quinones are naturally occurring isoprenoids that are widely exploited by photosynthetic reaction centers. Protein interactions modify the properties of quinones such that similar quinone species can perform diverse functions in reaction centers. Both type I and type II (oxygenic and nonoxygenic, respectively) reaction centers contain quinone cofactors that serve very different functions as the redox potential of similar quinones can operate at up to 800 mV lower reduction potential when present in type I reaction centers. However, the factors that determine quinone function in energy transduction remain unclear. It is thought that the location of the quinone cofactor, the geometry of its binding site, and the "smart" matrix effects from the surrounding protein environment greatly influence the functional properties of quinones. Photosystem II offers a unique system for the investigation of the factors that influence quinone function in energy transduction. It contains identical plastoquinones in the primary and secondary quinone acceptor sites, Q(A) and Q(B), which exhibit very different functional properties. This study is focused on elucidating the tuning and control of the primary semiquinone state, Q(A)(-), of photosystem II. We utilize high-resolution two-dimensional hyperfine sublevel correlation spectroscopy to directly probe the strength and orientation of the hydrogen bonds of the Q(A)(-) state with the surrounding protein environment of photosystem II. We observe two asymmetric hydrogen bonding interactions of reduced Q(A)(-) in which the strength of each hydrogen bond is affected by the relative nonplanarity of the bond. This study confirms the importance of hydrogen bonds in the redox tuning of the primary semiquinone state of photosystem II.  相似文献   

4.
Previously, two binding sites for the secondary quinone Q(B) in the photosynthetic reaction center (RC) from Rhodopseudomonas viridis were identified by X-ray crystallography, a 'proximal' binding site close to the non-heme iron, and a 'distal' site, displaced by 4.2 A along the path of the isoprenoid tail [C.R.D. Lancaster and H. Michel, Structure 5 (1997) 1339-1359]. The quinone ring planes in the two sites differ by roughly a 180 degrees rotation around the isoprenoid tail. Here we present molecular dynamics simulations, which support the theory of a spontaneous transfer of Q(B) between the distal site and the proximal site. In contrast to earlier computational studies on RCs, the molecular dynamics simulations of Q(B) migration resulted in a proximal Q(B) binding pattern identical to that of the crystallographic findings. Also, we demonstrate that the preference towards the proximal Q(B) location is not necessarily attributed to reduction of Q(B) to the semiquinone, but already to the preceding reduction of the primary quinone Q(A) and resulting protonation changes in the protein. Energy mapping of the Q(B) binding pocket indicates that the quinone ring rotation required for completion of the transfer between the two sites is improbable at the distal or proximal binding sites due to high potential barriers, but may be possible at a newly identified position near the distal binding site.  相似文献   

5.
A prerequisite for any rational drug design strategy is understanding the mode of protein–ligand interaction. This motivated us to explore protein–substrate interaction in Type‐II NADH:quinone oxidoreductase (NDH‐2) from Staphylococcus aureus, a worldwide problem in clinical medicine due to its multiple drug resistant forms. NDHs‐2 are involved in respiratory chains and recognized as suitable targets for novel antimicrobial therapies, as these are the only enzymes with NADH:quinone oxidoreductase activity expressed in many pathogenic organisms. We obtained crystal and solution structures of NDH‐2 from S. aureus, showing that it is a dimer in solution. We report fast kinetic analyses of the protein and detected a charge‐transfer complex formed between NAD+ and the reduced flavin, which is dissociated by the quinone. We observed that the quinone reduction is the rate limiting step and also the only half‐reaction affected by the presence of HQNO, an inhibitor. We analyzed protein–substrate interactions by fluorescence and STD‐NMR spectroscopies, which indicate that NADH and the quinone bind to different sites. In summary, our combined results show the presence of distinct binding sites for the two substrates, identified quinone reduction as the rate limiting step and indicate the establishment of a NAD+‐protein complex, which is released by the quinone.  相似文献   

6.
The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.  相似文献   

7.
The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed.  相似文献   

8.
The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.  相似文献   

9.
The evolution of the light-induced absorption difference spectrum (380–500 nm) of the reaction centers from photosynthetic purple bacteria Rhodobacter sphaeroides has been examined over 200 μs. The observed changes are interpreted as the effects of proton movement along the H-bond between the primary quinone acceptor and its protein surroundings. A theoretical analysis of the spectral evolution, considering the proton tunneling kinetics, corroborates this interpretation. The electronic state of the primary quinone is stabilized within tens of microseconds; the process is retarded upon deuteration of the reaction center as well as in 90% glycerol, and accelerated upon nondestructive heating to 40°C.  相似文献   

10.
Acaricidal activity of the active constituent derived from Pyrus ussuriensis fruits against Dermatophagoides farinae and D. pteronyssinus was examined and compared with that of the commercial benzyl benzoate. The LD50 value of the ethyl acetate fraction obtained from the aqueous extract of P ussuriensis fruits was 9.51 and 8.59 microg/cm3 against D. farinae and D. pteronyssinus, respectively. The active constituent was identified as quinone by spectroscopic analyses. On the basis of LD50 values with quinone and its congeners, the compound most toxic against D. farinae was quinone (1.19 microg/cm3), followed by quinaldine (1.46), benzyl benzoate (9.32), 4-quinolinol (86.55), quinine (89.16), and 2-quinolinol (91.13). Against D. pteronyssinus, these were quinone (1.02 microg/ cm3), followed by quinaldine (1.29), benzyl benzoate (8.54), 4-quinolinol (78.63), quinine (82.33), and 2-quinolinol (86.24). These results indicate that the acaricidal activity of the aqueous extracts can be mostly attributed to quinone. Quinone was about 7.8 and 8.4 times more toxic than benzyl benzoate against D. farinae and D. pteronyssinus. Additionally, quinaldine was about 6.4 and 6.6 times more toxic than benzyl benzoate against D. farinae and D. pteronyssinus, respectively. Furthermore, the skin color of the dust mites was changed from colorless-transparent to dark brown-black by the treatment of quinone. These results indicate that quinone can be very useful as potential control agents, lead compounds, or the indicator of house dust mites.  相似文献   

11.
Oxidation-reduction thermodynamic equilibria involving the quinone-acceptor complex have been examined in whole-membrane fragments from Chloroflexus aurantiacus. The primary quinone acceptor was titrated by monitoring the amount of cytochrome c554 photooxidized by a flash of light as a function of the redox potential. In contrast to previous data obtained in purified plasma membranes, in which the primary quinone acceptor exhibited a midpoint potential equal to -50 mV at pH 8.2, in whole-membrane fragments it titrated at -210 mV (pH 8.0), with a pH dependence of -60 mV/pH up to a pK value of 9.3. o-Phenanthroline, an inhibitor of electron transfer from the primary to the secondary quinone acceptor, shifted the Em/pH curve of the primary acceptor to higher redox potentials. The midpoint potential of the secondary quinone acceptor and its dependence on pH has been determined by comparing the kinetics of the charge recombination processes within the reaction center complex in the presence and in the absence of o-phenanthroline. It is concluded that both the primary and the secondary quinone acceptors interact with a proton, with pK values of 9.3 and of approximately 10.2 respectively. At physiological pH the electron appears to be stabilized on the secondary with respect to the primary quinone acceptor by approximately 60 meV.  相似文献   

12.
The reduction of a series of 2,5-bis(1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives with various 3,6 substituents by the enzyme xanthine oxidase has been studied. The reduction rate has been assayed by measuring the rate of reduction of cytochrome c, which is very efficiently reduced by reduced BABQ species. Under nitrogen, the reduction rate correlated with the quinone reduction potential and steric parameters. Comparing reduction rates under nitrogen and air demonstrates that at BABQ concentrations greater than 25 microM the competition for electrons from xanthine oxidase between oxygen and the BABQ derivative is dominated by the latter. This is also confirmed by the effect of superoxide dismutase (SOD): in the presence of a BABQ derivative, cytochrome c reduction can be totally inhibited by SOD, although the required amount of SOD depends on the redox potential of the quinones. This indicates that SOD causes the equilibrium between semiquinone and superoxide to shift, resulting in a decrease of the semiquinone concentration. It is concluded that reduction by xanthine oxidase is a simple and effective method for reducing aziridinylbenzoquinones.  相似文献   

13.
Quinone oxidoreductases are flavoproteins that catalyze two-electron reduction and detoxification of quinones. This leads to the protection of cells against toxicity, mutagenicity, and cancer due to exposure to environmental and synthetic quinones and its precursors. Two cytosolic forms of quinone oxidoreductases [NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2)] were previously identified, purified, and cloned. A role of cytosolic NQO1 in protection of cells from oxidative stress, cytotoxicity, and mutagenicity of quinones was established. Currently, we have characterized and partially purified the NQO activity from rat liver microsomes. This activity was designated as microsomal NQO (mNQO). The mNQO activity showed significantly higher affinity for NADH than NADPH as electron donors and catalyzed reduction of 2,6-dichlorophenolindophenol and menadione. The mNQO activity was insensitive to dicoumarol, a potent inhibitor of cytosolic NQO1. Western analysis of microsomal proteins revealed 29- and 18-kDa bands that cross-reacted with polyclonal antibodies raised against cytosolic NQO1. The mNQO activity was partially purified by solubilization of microsomes with detergent Chaps, ammonium sulfate fractionation, and DEAE-Sephacel column chromatography. The microsomal mNQO proteins are expected to provide additional protection after cytosolic NQOs against quinone toxicity and mutagenicity.  相似文献   

14.
Resolution of the fumarate reductase complex (ABCD) of Escherichia coli into reconstitutively active enzyme (AB) and a detergent preparation containing peptides C and D resulted in loss of quinone reductase activity, but the phenazine methosulfate or fumarate reductase activity of the enzyme was unaffected. An essential role for peptides C and D in quinone reduction was confirmed by restoration of this activity on recombination of the respective preparations. Neither peptide C nor peptide D by itself proved capable of permitting quinone reduction and membrane binding by the enzyme when E. coli cells were transformed with plasmids coding for the enzyme and the particular peptides. Transformation of a plasmid coding for all subunits resulted in a 30-fold increase in membrane-bound complex, which exhibited, however, turnover numbers for succinate oxidation and fumarate reduction that were intermediate between the high values characteristic of chromosomally produced complex and the relatively low values found for the isolated complex. It is also shown that preparations of the isolated complex and membrane-bound form of the enzyme, as obtained from anaerobically grown cells, are in the deactivated state owing to the presence of tightly bound oxalacetate and thus must be activated prior to assay.  相似文献   

15.
NAD(P)H/quinone acceptor oxidoreductase type 1 (QR1) protects cells from cytotoxic and neoplastic effects of quinones though two-electron reduction. Kinetic experiments, docking, and binding affinity calculations were performed on a series of structurally varied quinone substrates. A good correlation between calculated and measured binding affinities from kinetic determinations was obtained. The experimental and theoretical studies independently support a model in which quinones (with one to three fused aromatic rings) bind in the QR1 active site utilizing a pi-stacking interaction with the isoalloxazine ring of the FAD cofactor.  相似文献   

16.
The epsilon-proteobacteria form a subdivision of the Proteobacteria including the genera Wolinella, Campylobacter, Helicobacter, Sulfurospirillum, Arcobacter and Dehalospirillum. The majority of these bacteria are oxidase-positive microaerophiles indicating an electron transport chain with molecular oxygen as terminal electron acceptor. However, numerous members of the epsilon-proteobacteria also grow in the absence of oxygen. The common presence of menaquinone and fumarate reduction activity suggests anaerobic fumarate respiration which was demonstrated for the rumen bacterium Wolinella succinogenes as well as for Sulfurospirillum deleyianum, Campylobacter fetus, Campylobacter rectus and Dehalospirillum multivorans. To date, complete genome sequences of Helicobacter pylori and Campylobacter jejuni are available. These bacteria and W. succinogenes contain the genes frdC, A and B encoding highly similar heterotrimeric enzyme complexes belonging to the family of succinate:quinone oxidoreductases. The crystal structure of the W. succinogenes quinol:fumarate reductase complex (FrdCAB) was solved recently, thus providing a model of succinate:quinone oxidoreductases from epsilon-proteobacteria. Succinate:quinone oxidoreductases are being discussed as possible therapeutic targets in the treatment of several pathogenic epsilon-proteobacteria.  相似文献   

17.
Depth-related changes in whole-community structure were evaluated in a coastal marine sediment using a molecular fingerprinting method, terminal restriction fragment length polymorphism (T-RFLP) analysis, and a chemotaxonomic technique (quinone profiling). Dendrograms derived from both T-RFLP analysis and quinone profiling indicated a significant variation in microbial community structure between the 0-2 cm layer and deeper layers. This corresponded to the dramatic change in the redox potential, acid-volatile sulphide-sulphur and bacterial numbers observed at 0-2 cm and 2-4 cm depths. A significant change in the number of terminal restriction fragments (T-RFs) was also detected at this transition depth. However, the change in major T-RFs with depth was not seen in electropherograms. The population changes were primarily variations in minor ribotypes. Most quinone homologues were detected at all depths, although the quinone composition changed with depth. Therefore, quinone profiling also suggested that the depth-related variation was primarily attributable to minor bacterial groups rather than change in the major population structure. 16S rDNA clone library analysis revealed that clones belonging to the genera Vibrio and Serratia predominated as major bacterial groups at all depths. Our data suggested that the sediment community might result from sedimentation effects of sinking particles. Overall, our results demonstrated that the combined methods of T-RFLP analysis and quinone profiling were effective for assessing depth-related microbial populations.  相似文献   

18.
A rapid, sensitive fluorescence method was applied here for detection of oxidized tocopherol quinones in total plant tissue extracts using HPLC, employing a post-column reduction of these compounds by a Zn column. Using this method, we were able to detect both alpha- and gamma-tocopherol quinones in Chamydomonas reinhardii with a very high degree of sensitivity. The levels of both compounds increased under high light stress in the presence of pyrazolate in parallel to a decrease in the content of the corresponding tocopherols. The formation of tocopherol quinones from tocopherols was apparently due to their oxidation by singlet oxygen, which is formed in photosystem II under high light stress. alpha-Tocopherol quinone was also detected in a variety of higher plants of different age, and its level was found to increase during senescence in leaves grown under natural conditions. In contrast to alpha-tocopherol quinone, gamma-tocopherol quinone was not found in the higher plant species investigated with the exception of young runner bean leaves, where the levels of both compounds increased dramatically during cold and light stress. Taking advantage of native fluorescence of the reduced alpha-tocopherol quinone (alpha-tocopherol quinol), it can be detected in plant tissue extracts with a high sensitivity. In young runner bean leaves, alpha-tocopherol quinol was found at a level similar to alpha-tocopherol.  相似文献   

19.
A native structure of the cytochrome b(6)f complex with improved resolution was obtained from crystals of the complex grown in the presence of divalent cadmium. Two Cd(2+) binding sites with different occupancy were determined: (i) a higher affinity site, Cd1, which bridges His143 of cytochrome f and the acidic residue, Glu75, of cyt b(6); in addition, Cd1 is coordinated by 1-2 H(2)O or 1-2 Cl(-); (ii) a second site, Cd2, of lower affinity for which three identified ligands are Asp58 (subunit IV), Glu3 (PetG subunit) and Glu4 (PetM subunit). Binding sites of quinone analogue inhibitors were sought to map the pathway of transfer of the lipophilic quinone across the b(6)f complex and to define the function of the novel heme c(n). Two sites were found for the chromone ring of the tridecyl-stigmatellin (TDS) quinone analogue inhibitor, one near the p-side [2Fe-2S] cluster. A second TDS site was found on the n-side of the complex facing the quinone exchange cavity as an axial ligand of heme c(n). A similar binding site proximal to heme c(n) was found for the n-side inhibitor, NQNO. Binding of these inhibitors required their addition to the complex before lipid used to facilitate crystallization. The similar binding of NQNO and TDS as axial ligands to heme c(n) implies that this heme utilizes plastoquinone as a natural ligand, thus defining an electron transfer complex consisting of hemes b(n), c(n), and PQ, and the pathway of n-side reduction of the PQ pool. The NQNO binding site explains several effects associated with its inhibitory action: the negative shift in heme c(n) midpoint potential, the increased amplitude of light-induced heme b(n) reduction, and an altered EPR spectrum attributed to interaction between hemes c(n) and b(n). A decreased extent of heme c(n) reduction by reduced ferredoxin in the presence of NQNO allows observation of the heme c(n) Soret band in a chemical difference spectrum.  相似文献   

20.
We have studied changes in plasma membrane NAD(P)H:quinone oxidoreductases of HL-60 cells under serum withdrawal conditions, as a model to analyze cell responses to oxidative stress. Highly enriched plasma membrane fractions were obtained from cell homogenates. A major part of NADH-quinone oxidoreductase in the plasma membrane was insensitive to micromolar concentrations of dicumarol, a specific inhibitor of the NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), and only a minor portion was characterized as DT-diaphorase. An enzyme with properties of a cytochrome b 5 reductase accounted for most dicumarol-resistant quinone reductase activity in HL-60 plasma membranes. The enzyme used mainly NADH as donor, it reduced coenzyme Q0 through a one-electron mechanism with generation of superoxide, and its inhibition profile by p-hydroxymercuribenzoate was similar to that of authentic cytochrome b 5 reductase. Both NQO1 and a novel dicumarol-insensitive quinone reductase that was not accounted by a cytochrome b 5 reductase were significantly increased in plasma membranes after serum deprivation, showing a peak at 32 h of treatment. The reductase was specific for NADH, did not generate superoxide during quinone reduction, and was significantly resistant to p-hydroxymercuribenzoate. The function of this novel quinone reductase remains to be elucidated whereas dicumarol inhibition of NQO1 strongly potentiated growth arrest and decreased viability of HL-60 cells in the absence of serum. Our results demonstrate that upregulation of two-electron quinone reductases at the plasma membrane is a mechanism evoked by cells for defense against oxidative stress caused by serum withdrawal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号