首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brief treatment of intact thymocytes with TPA and other tumor promoters causes a reduction in protein kinase C activity from the cytosol and an increase in kinase activity in the particulate fraction. In contrast to the activity in the cytosol, which is absolutely dependent on the addition of Ca2+, phosphatidylserine and diolein, the activity in the particulate fraction is independent of these agents. Analysis of target specificity of the particulate kinase activity using exogenous and endogenous substrates suggests that the increased phosphorylation in the particulate fraction is catalysed by protein kinase C with altered catalytic properties. Although interleukin-1 and TPA are both co-mitogens for murine thymocytes, interleukin-1 does not share with TPA its property to alter protein kinase activity in the cytosolic and particulate fractions.  相似文献   

2.
Brief treatment of intact thymocytes with TPA and other tumor promoters causes a reduction in protein kinase C activity from the cytosol and an increase in kinase activity in the pariculate fraction. In contrast to the activity in the cytosol, which is absolutely dependent on the addition of Ca2+, phosphatidylserine and diolein, the activity in the particulate fraction is independent of these agents. Analysis of target specificity of the particulate kinase activity using exogenous and endogenous substrates suggests that the increased phosphorylation in the particulate fraction is catalysed by protein kinase C with altered catalytic properties. Although interleukin-1 and TPA are both co-mitogens for murine thymocytes, interleukin-1 does not share with TPA its property to alter protein kinase activity in the cytosolic and particulate fractions.  相似文献   

3.
R Averdunk  T Günther 《FEBS letters》1986,195(1-2):357-361
In concanavalin A-treated thymus cells and phytohemagglutinin-treated spleen cells, the distribution of protein kinase C is changed. Shortly after addition of plant lectins, the activity of protein kinase C increased in the cytosol and decreased in the particulate fraction. 2 h later, the activity of protein kinase C decreased in the cytosol and increased in the particulate fraction. Membrane binding of protein kinase C and tion of DNA synthesis showed the same dependency on concanavalin A concentration. A long-term membrane binding of protein kinase C seems to be essential for lymphocyte stimulation.  相似文献   

4.
1. The perfused rat heart was treated with the tumour-promoter and protein kinase C activator, phorbol 12-myristate 13-acetate and the distribution of protein kinase C activity between cytosolic and particulate fractions determined. 2. Phorbol ester treatment led to a rapid loss of protein kinase C activity from the cytosol (t0.5 = 2 min) with a corresponding translocation into the particulate fraction. Translocated protein kinase C activity was tightly bound to the particulate fraction, could only be extracted with buffers containing 2% Triton X-100 and could therefore be misinterpreted as being down-regulated. 3. Claims of rapid down-regulation of protein kinase C activity by phorbol esters need to be supported by rigorous procedures for extraction of the particulate material.  相似文献   

5.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

6.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich histone phosphorylation assay. Attempts to uncover latent activity in the particulate fraction were unsuccessful. Approximately 75% of the supernatant protein kinase C activity could be translocated to the particulate fraction by prior treatment (30-60 min) of the cultures with 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not with 4 alpha-phorbol, an inactive phorbol ester. Investigation of endogenous substrates for protein kinase C showed that TPA treatment brought about an increase in phosphorylation in membrane proteins and a decrease in phosphorylation of supernatant proteins. These findings indicate that the distribution of protein kinase C in astrocytes differs substantially from that in whole brain tissue, where approximately two-thirds of the protein kinase C activity is associated with the particulate fraction. Because protein kinase C is concentrated in the cytosol of astrocytes and most of this activity can be translocated to membranes, astrocytes may be particularly well-suited to respond to signals that activate phosphoinositide-linked receptors in brain.  相似文献   

7.
Membrane-associated protein kinases in human polymorphonuclear leukocytes were studied. In unstimulated polymorphonuclear leukocytes the protein kinase C was predominantly present in the cytosol but in phorbol 12-myristate 13-acetate- (PMA-) activated cells a time and dose-dependent translocation of the kinase to the particulate fraction occurred. Two new protein kinase activities also appeared in the particulate fraction upon PMA activation. The one had a Mr of 40,000 and its activity was independent of phospholipids. The other (Mr 90,000) as partially activated by phospholipids, but separated from protein kinase C on DEAE-cellulose chromatography.  相似文献   

8.
Interleukin-2 and phorbol 12-myristate 13-acetate (PMA) are shown to induce DNA-synthesis in human T-lymphocytes activated with phytohaemagglutinin. However, whereas PMA induced a rapid and persistent translocation of protein kinase C from cytosol to particulate fraction, no translocation was observed upon stimulation with interleukin-2. Treatment with PMA for 72 h caused a slow down-regulation of protein kinase C activity to less than 10% of unstimulated T-lymphocytes and was mainly located in the particulate fraction. In contrast, stimulation with phytohaemagglutinin increased the total cellular protein kinase C activity by approx. 100% but with an unaltered subcellular distribution. However, interleukin-2-induced DNA synthesis in PMA- and phytohaemagglutinin-stimulated T-lymphocytes was comparable. Further, maximal DNA synthesis was shown to be dependent on the continuous presence of interleukin-2. These results indicate that interleukin-2-induced proliferation of activated human T-lymphocytes can occur without a translocation of protein kinase C from the cytosol to the particulate fraction and that interleukin-2 most likely functions as a progression factor.  相似文献   

9.
We have measured the activity of protein kinase C in particulate and cytosolic fractions prepared from lymphocytes following stimulation with phytohemagglutinin. Activity in the particulate fraction increased approximately three-fold within 5 min, and declined to nearly zero between 20 and 60 min. Cytosolic activity increased in a biphasic manner, with an initial increase at 5 min, a decline at 10 min, and a further increase by 20 min, which was sustained for at least 60 min. By contrast, 12-O-tetradecanoylphorbol-13-acetate caused a rapid translocation of protein kinase C from cytosol to the particulate fraction which was sustained for at least 1 h. The results suggest that agents, such as phytohemagglutinin, which both generate diacylglycerol and mobilize intracellular Ca2+ stores, result in changes in subcellular distribution and activity of protein kinase C which are different from those elicited by 12-O-tetradecanoylphorbol-13-acetate.  相似文献   

10.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was examined in bovine adrenal glomerulosa cells treated with angiotensin II or potassium. Protein kinase C was isolated from cytosol and from detergent-solubilized particulate fractions by DEAE-cellulose chromatography. A major peak of activity for both the soluble and particulate forms of adrenal glomerulosa protein kinase C was eluted at 0.05-0.09 M NaCl. The soluble and particulate forms were found to constitute about 95 and 5%, respectively, of the total enzyme activity in unstimulated cells. A second peak of kinase activity was eluted with 0.15-0.19 M NaCl, which was not dependent on the presence of phospholipids. Exposure of isolated cells for 20 min to 10(-8) M angiotensin II resulted in a decrease in cytosolic activity to 30-40% of control values, and in a corresponding increase in protein kinase C activity associated with the particulate fraction. This hormone-induced redistribution was found to be dose-dependent with an ED50 of 2 nM for angiotensin II, and it occurred rapidly, reaching a plateau within 5-10 min. It was prevented by the specific antagonist [Sar1,Ala8]angiotensin II. By contrast, stimulation with 12 mM KCl did not change the subcellular distribution of protein kinase C activity. These results suggest that redistribution of protein kinase C represents an early step in the post-receptor activation cascade following angiotensin II, but not potassium stimulation of adrenal glomerulosa cells.  相似文献   

11.
Phorbol 12-myristate 13-acetate (PMA) induces time-dependent changes in protein kinase C subcellular distribution and enzymatic activity in the human osteosarcoma cell line SaOS-2. Short (less than 60 min) incubations with PMA caused decreased cytosolic enzyme activity and a concomitant increase in particulate protein kinase; after 3 h, particulate protein kinase C activity also declined to reach less than 10% of basal activity by 24 h (Krug, E., and Tashjian, Jr., A. H., (1987) Cancer Res. 47, 2243-2246). In order to determine whether the loss in enzyme activity was due to decreased enzyme protein, Western blot analyses were performed using a polyclonal antibody against protein kinase C raised in rabbits. This approach confirmed the previously reported time-related changes: 80-kDa immunoreactive protein kinase C initially translocated from the cytosol to the particulate cell fraction and later disappeared completely from the particulate fraction. Loss of protein kinase C enzymatic activity thus results from actual loss of the 80-kDa protein; we found no evidence for generation of a calcium/phospholipid-independent protein kinase C-like form of the enzyme. Membrane association was confirmed by immunoprecipitation experiments using [35S]methionine-labeled cells. Brief exposure to PMA caused a marked loss in the [35S]methionine-labeled cytosolic protein kinase C band and an increase in the labeled particulate band. Protein kinase C immunoprecipitated from cells treated with PMA for 14 h displayed an increase in [35S]methionine label despite a greater than 80% loss of enzyme activity. The high specific radioactivity of the remaining 80-kDa protein leads us to conclude that long term treatment with PMA causes an increase in the rate of protein kinase C synthesis accompanied by a still greater increase in the rate of enzyme degradation in SaOS-2 cells.  相似文献   

12.
Protein kinase C activity in the particulate fraction of the heart increases two-fold during mid-stage of disease in the cardiomyopathic hamster. No change in the corresponding enzyme activity occurs with aging in healthy control hamsters. In the solubilized particulate fraction of hearts from both myopathic and control animals, Ca++/phospholipid-dependent endogenous phosphorylation of proteins of Mr 26, 31, 45, 53, 69, 98, 105 and 126 kDa are observed. All of these proteins are more highly phosphorylated in the protein kinase C-enriched preparation from the myopathic heart compared to the control. No significant differences between myopathic and control hamsters are observed in the activities of protein kinase C or phosphoinositide-specific phospholipase C from heart cytosol.  相似文献   

13.
Protein kinase C alterations in the fetal rat brain after global ischemia   总被引:7,自引:0,他引:7  
Marked changes in the intracellular localization of brain protein kinase C are evident after global ischemia generated by the restriction of the placental blood flow in the near-term rat embryo. A rapid (5 min) ischemia-dependent translocation of the enzyme from the cytosol to the particulate membrane fraction, which is completely reversible upon reperfusion, is observed. After 30 min of ischemia, substantial losses in protein kinase C activity and content as measured by [3H]phorbol dibutyrate binding are apparent. This is accompanied by a marked increase of a Ca2+-phosphatidylserine-independent kinase activity, already evident after 5 min of ischemia. By 15 or 30 min the total activity of the latter enzyme is equally distributed between the particulate and the cytosol fractions and is more than 3-fold higher in ischemic in comparison to naive animals. Activation and possible deregulation of protein kinase C are proposed to represent an initial step in the pathophysiology of brain ischemia.  相似文献   

14.
Sensory neurons of the chick embryo are supported in culture by several neurotrophic factors, including the phorbol esters. Because phorbol esters are known to activate one of the second messengers, namely, protein kinase C, it was of interest to see if the neurotrophic action of phorbol 12,13-dibutyrate (PDB) was related to the activation of protein kinase C in sensory neurons. Sensory neurons were obtained from dorsal root ganglia of 10-day-old chick embryos and maintained in a serum-free medium for several days to quantify survival and analyze protein kinase C activity. PDB (30 nM) supported the survival of approximately 50% of the total number of neurons plated. This value was comparable to that supported by nerve growth factor (NGF; 40 ng/ml). If PDB and NGF were added together, there was no additive effect on the survival. The protein kinase C activity of the particulate and cytosolic fractions of sensory neurons supported by NGF for 3 days was 1.26 +/- 0.1 and 2.9 +/- 0.32 pmol/min/mg of protein, respectively. In contrast, neurons supported by PDB showed an approximately 500% increase in enzyme activity in their particulate fraction. The enzyme activity of the cytosolic fraction was decreased by approximately 40%. If NGF-supported neurons were treated with PDB (30 nM) for 15 min, protein kinase C activity increased greater than 400% in the particulate fraction, whereas an approximately 50% decrease was observed in the cytosolic fraction. The protein kinase C value, expressed as a ratio of the activities in the particulate to cytosol fractions, showed large increases after phorbol treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
There is little information on the molecular events that control the subcellular distribution of protein kinase C during cardiac cell differentiation. We examined protein kinase C activity and the subcellular distribution of representatives of the "classical," "novel," and "atypical" protein kinase C's in P19 murine teratoma cells induced to undergo differentiation into cardiac myocytes by the addition of dimethylsulfoxide to the medium (Grepin et al., Development 124, 2387-2395, 1997). Differentiation was assessed by the presence of striated myosin, a morphological marker for cardiac cells. Addition of dimethyl sulfoxide to the medium resulted in the appearance of striated myosin by 10 days postincubation. Immunolocalization and Western blot studies revealed that a significant proportion of protein kinase Calpha, -epsilon, and -zeta were associated with the particulate fraction in P19 cells prior to differentiation. Differentiation into cardiac cells resulted in a translocation of protein kinase C activity from the particulate fraction to cytosol and localization of most of protein kinase Calpha, -epsilon, and -zeta to the cytoplasmic compartment. The total cellular protein kinase C activity was unaltered during differentiation. The translocation of protein kinase C activity during differentiation of P19 cells into cardiac myocytes was associated with a decrease in the levels of cellular 1, 2-diacyl-sn-glycerol. The cellular levels of phosphatidylserine and phosphatidylinositol did not change during differentiation. Addition of 1,2-dioctanoyl-sn-glycerol, a cell-permeant 1, 2-diacyl-sn-glycerol analog, reversed the differentiation-induced switch in the relative distribution of protein kinase C activity and dramatically increased the association of protein kinase Calpha with the particulate fraction. Addition of 1,2-dioctanoyl-sn-glycerol did not reverse the pattern of distribution for protein kinase Cepsilon or -zeta. The results indicate that protein kinase C activity and protein kinase Calpha, -epsilon and -zeta isoforms are redistributed from the particulate to the cytosolic fraction during differentiation of P19 cells into cardiomyocytes. The mechanism for the redistribution of protein kinase Calpha may be related to the reduction in the cellular 1,2-diacyl-sn-glycerol levels that accompany differentiation.  相似文献   

16.
Incubation of primary neuronal cultures prepared from the brains of neonatal rats with 50 microM epinephrine resulted in the transient redistribution of protein kinase C from the cytosol to the particulate fraction. This effect occurred after 1 and 5 min of incubation and resulted in a decrease in cytosolic protein kinase C activity with a corresponding increase in particulate protein kinase C of approximately 30% and 15%, respectively. The epinephrine-stimulated translocation of protein kinase C was blocked by 1 microM prazosin indicating the involvement of alpha 1-adrenergic receptors. Further, inclusion of 0.1 microM Ca2+ in the homogenization buffer was found to significantly enhance the binding of protein kinase C to cellular membranes prepared from neuronal cultures. These results indicate that alpha 1-adrenergic receptors in neuronal brain cell cultures are linked to the activation of protein kinase C and that the mobilization of Ca2+ may enhance this effect.  相似文献   

17.
Staurosporine, a most potent protein kinase C inhibitor, actually inhibited protein kinase C activity obtained either from cytosol or particulate fraction of mouse epidermis. Staurosporine at the concentrations which exert protein kinase C inhibition, however, failed to inhibit, but markedly augmented 12-O-tetradecanoylphorbol-13-acetate (TPA)-caused ornithine decarboxylase (ODC) induction in isolated mouse epidermal cells. Staurosporine by itself induced ODC activity as TPA does. Mechanism of ODC induction seems different between these two compounds. Another protein kinase C inhibitor, H-7, inhibited both staurosporine- and TPA-caused ODC induction.  相似文献   

18.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was analyzed in cultured pituitary gonadotrophs during treatment with gonadotropin-releasing hormone (GnRH). In pituitary cells purified by centrifugal elutriation, the extent of protein kinase C redistribution during GnRH stimulation was correlated with the enrichment of gonadotrophs. GnRH-stimulated release of luteinizing hormone (LH) from gonadotroph-enriched cells was accompanied by a rapid and dose-dependent decrease in cytosolic protein kinase C and by a corresponding increase in protein kinase C activity in the particulate fraction. Retinal directly inhibited the activity of cytosolic protein kinase C and also attenuated the release of LH from GnRH-stimulated gonadotrophs. These findings, and the ability of GnRH to cause rapid translocation of cytosolic protein kinase C to a membrane-associated form, suggest that hormonal activation of protein kinase C is an intermediate step in the stimulation of pituitary LH secretion by GnRH.  相似文献   

19.
The potent tumor promoter 12-O-tetradecanoyl-phorbol 13-acetate (TPA) affects several thyroid cell functions and interacts with thyroid-stimulating hormone (TSH) either by inhibiting or potentiating its action on different cellular parameters. Since phorbol ester acts mainly through the activation of protein kinase C, which is its receptor, we studied this activation and its interaction with TSH and forskolin in suspension cultures of porcine thyroid cells. In thyroid cell cultures, TPA has a dual effect on protein kinase C activity: immediately (2-5 min) after exposure of cells to TPA, it began to be translocated from the cytosol to the particulate fraction. The transfer of the cytosolic enzyme was total and could occur with or without a loss of activity. The translocated enzyme still needed Ca2+ and phospholipids for its activation. The basal activity increased transiently (2-4 h) in both the cytosol and particulate fractions during translocation. The peak activity in the particulate fraction was reached 10-30 min after exposure of cells to TPA, and was followed by down-regulation of protein kinase C and almost complete disappearance of its activity. The residual activity was about 13% of control after a 2-day exposure to TPA. It was unequally distributed between cytosol (4%) and particulate fraction (9%). Prolonged exposure of cells to TPA did not affect either the activity or the subcellular distribution of the cAMP-dependent protein kinase activity. TPA interacted with TSH and prevented the decrease of this activity induced by prolonged exposure of cells to the hormone not only when it was introduced simultaneously with TSH, but also when it was added 24 h after TSH. However, the forskolin-induced decrease in cAMP-dependent protein kinase activity was not prevented by the presence of TPA. TPA also affected the increases in cAMP accumulation mediated by TSH and forskolin. The TSH-induced increase was significantly stimulated by TPA after short contacts (5-15 min), while longer preincubations of cells with TPA provoked a very strong inhibition of the TSH action. However, the forskolin-induced stimulation of the cAMP accumulation was maintained and even further increased in the presence of TPA. Consequently, the actions of TSH and TPA are apparently interdependent, while those of forskolin and TPA seem to be parallel and independent. Neither TSH nor forskolin prevented the TPA-induced down regulation of protein kinase C. The biologically inactive phorbol ester analogue 4 alpha-phorbol 12,13-didecanoate had no effect on protein kinase C activity, and did not interact with either TSH or forskolin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Concanavalin A and phorbol ester induce human blood monocytes to produce superoxide. We tested whether activation of human monocytes by these agents is accompanied by a subcellular redistribution of protein kinase C. Phorbol ester predictably caused a profound shift of the enzyme from the cytosol to the particulate fraction. In contrast concanavalin A induced a shift of the enzyme from the particulate fraction to the cytosol. The opposite effect of these agents on kinase C translocation was observed also by analysis of the phosphorylation of cytosolic proteins. Kinase C is either not involved in monocyte activation or does so by distinct pathways determined by the activating agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号