首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translin-associated factor X (TRAX) is the predominantly cytoplasmic binding partner of TB-RBP/translin in mouse testis. Four mouse testis cDNAs encoding specific TRAX-interacting proteins were isolated from a yeast two-hybrid library screen. One novel cDNA designated Tsnaxip1 (TRAX-interacting protein-1) encodes 709 amino acids. We isolated a cDNA encoding the 427 carboxy-terminal amino acids of MEA-2, a Golgi-associated, maleenhanced autoantigen; a cDNA encoding 429 amino acids with 73% homology to centrosomal Akap9; and a cDNA encoding 346 amino acids with 75% homology to SUN1, a predicted human protein that contains a SUN domain (which is present in some perinuclear proteins). Interactions were verified using in vitro synthesized fusion proteins. All four genes were expressed in the testis and enriched in germ cells. Confocal microscopy studies using green fluorescent protein fusion proteins determined that these TRAX-interacting proteins colocalize with TRAX. The data suggest that TRAX may have a function associated with perinuclear organelles during spermatogenesis.  相似文献   

2.
Testis brain RNA-binding protein (TB-RBP), the mouse orthologue of human translin, is an RNA and single-stranded DNA-binding protein abundant in testis and brain. Translin-associated factor X (TRAX) was identified as a protein that interacts with TB-RBP and is dependent upon TB-RBP for stabilization. Using immunohistochemistry to investigate the subcellular locations of TB-RBP and TRAX during spermatogenesis, both proteins localize in nuclei in meiotic pachytene spermatocytes and in the cytoplasm of subsequent meiotic and post-meiotic cells. An identical subcellular distribution is seen in female germ cells. Western blot analysis of germ cell protein extracts reveals an increased ratio of TRAX to TB-RBP in meiotic pachytene spermatocytes compared with the post-meiotic round and elongated spermatids. Using COS-1 cells and mouse embryonic fibroblasts derived from TB-RBP null mice as model systems to examine the shuttling of TB-RBP and TRAX, we demonstrate that TRAX contains a functional nuclear localization signal and TB-RBP contains a functional nuclear export signal. Coexpression of both proteins in COS-1 cells and TB-RBP-deficient mouse embryonic fibroblasts reveals that the ratio of TRAX to TB-RBP determines their subcellular locations, i.e. increased TRAX to TB-RBP ratios lead to nuclear localizations, whereas TRAX remains in the cytoplasm when TB-RBP levels are elevated. These subcellular distributions require interaction between TB-RBP and TRAX. We propose that the subcellular locations of TB-RBP and TRAX in male germ cells are modulated by the relative ratios of TRAX and TB-RBP.  相似文献   

3.
4.
X Q Wu  S Lefrancois  C R Morales  N B Hecht 《Biochemistry》1999,38(35):11261-11270
Numerous functions have been proposed for the testis brain RNA-binding protein (TB-RBP) and its human homologue, Translin, ranging from mRNA transport and translational regulation to DNA rearrangement and repair. To gain insight into the likely functions of this 26 kDa protein, immunoprecipitation was used to identify proteins that interact with TB-RBP in mouse cytosolic extracts. Three proteins, the transitional endoplasmic reticulum ATPase, a cytoskeletal gamma actin, and Trax, were specifically immunoprecipitated with an affinity-purified antibody to recombinant mouse TB-RBP. In vitro binding assays with recombinant proteins and EM immunocytochemistry confirm that TB-RBP interacts with the TER ATPase in vitro and in vivo. Confocal microscopy has demonstrated that TB-RBP colocalizes with actin in the cytoplasm of male germ cells. The immunoprecipitation of Trax with TB-RBP confirms a published report demonstrating protein interactions between the two proteins in a yeast two-hybrid assay. These data support the hypothesis that TB-RBP serves as a link in attaching specific mRNAs to cytoskeletal structures and suggests an involvement for the ubiquitously expressed TER ATPase in intracellular and/or intercellular mRNA transport.  相似文献   

5.
6.
7.
Translin is a single-stranded DNA and RNA binding protein that has a high affinity for G-rich sequences. TRAX is a Translin paralog that associates with Translin. Both Translin and TRAX were highly conserved in eukaryotes. The nucleic acid binding form of Translin is a barrel-shaped homo-octamer. A Translin–TRAX hetero-octamer having a similar structure also binds nucleic acids. Previous reports suggested that Translin may be involved in chromosomal translocations, telomere metabolism and the control of mRNA transport and translation. More recent studies have indicated that Translin–TRAX hetero-octamers are involved in RNA silencing. To gain a further insight into the functions of Translin, we have undertaken to systematically search for proteins with which it forms specific complexes in living cells. Here we report the results of such a search conducted in the fission yeast Schizosaccharomyces pombe, a suitable model system. This search was carried out by affinity purification and immuno-precipitation techniques, combined with differential labeling of the intracellular proteins with the stable isotopes 15N and 14N. We identified for the first time two proteins containing an RNA Recognition Motif (RRM), which are specifically associated with the yeast Translin: (1) the pre-mRNA-splicing factor srp1 that belongs to the highly conserved SR family of proteins and (2) vip1, a protein conserved in fungi. Our data also support the presence of RNA in these intracellular complexes. Our experimental approach should be generally applicable to studies of weak intracellular protein–protein interactions and provides a clear distinction between false positive vs. truly interacting proteins.  相似文献   

8.
Translin is a single-stranded RNA- and DNA-binding protein, which has been highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. TRAX is a Translin paralog associated with Translin, which has coevolved with it. We generated structural models of the S. pombe Translin (spTranslin), based on the solved 3D structure of the human ortholog. Using several bioinformatics computation tools, we identified in the equatorial part of the protein a putative nucleic acids interaction surface, which includes many polar and positively charged residues, mostly arginines, surrounding a shallow cavity. Experimental verification of the bioinformatics predictions was obtained by assays of nucleic acids binding to amino acid substitution variants made in this region. Bioinformatics combined with yeast two-hybrid assays and proteomic analyses of deletion variants, also identified at the top of the spTranslin structure a region required for interaction with spTRAX, and for spTranslin dimerization. In addition, bioinformatics predicted the presence of a second protein-protein interaction site at the bottom of the spTranslin structure. Similar nucleic acid and protein interaction sites were also predicted for the human Translin. Thus, our results appear to generally apply to the Translin family of proteins, and are expected to contribute to a further elucidation of their functions.  相似文献   

9.
10.
Testis brain RNA-binding protein (TB-RBP) is a sequence-dependent RNA-binding protein that binds to conserved Y and H sequence elements present in many brain and testis mRNAs. Using recombinant TB-RBP and a highly enriched tubulin fraction, we demonstrate here that recombinant TB-RBP binds to microtubules assembled in vitro. The interaction between recombinant TB-RBP and microtubules was inhibited by high salt and by the microtubule disassembling agents colcemid and calcium, but not by the microfilament-disassembling agent cytochalasin D. Confocal microscopy confirmed colocalization of TB-RBP and tubulin in the cytoplasm of male germ cells. An affinity-purified antibody prepared against recombinant TB-RBP specifically precipitated mRNAs encoding myelin basic protein and alpha calmodulin-dependent kinase II-two transported mRNAs, and protamines 1 and 2-two translationally regulated testicular mRNAs. These data indicate an intracellular association between TB-RBP and specific target mRNAs and suggest an involvement of TB-RBP in microtubule-dependent mRNA transport in the cytoplasm of cells.  相似文献   

11.
The A2A adenosine receptor (A2AR) is a G‐protein–coupled receptor. We previously reported that the C terminus of the A2AR binds to translin‐associated protein X (TRAX) and modulates nerve growth factor (NGF)‐evoked neurite outgrowth in PC12 cells. Herein, we show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX‐dependent manner. Importantly, suppression of a TRAX‐interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, whereas overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear‐retained KIF2A variant (NLS‐KIF2A) did not rescue the impaired neurite outgrowth as did the wild‐type KIF2A. Therefore, redistribution of KIF2A to the cytoplasmic fraction is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 604–621, 2010  相似文献   

12.
The single copy mouse Testis Brain RNA-Binding Protein (TB-RBP) gene encodes three mRNAs of 3.0, 1.7, and 1.0 kb which only differ in their 3' UTRs. The 1 kb TB-RBP mRNA predominates in testis, while somatic cells preferentially express the 3.0 kb TB-RBP mRNA. Here we show that the 1 kb mRNA is translated several-fold more efficiently than the 3 kb TB-RBP in rabbit reticulocyte lysates and cells with elevated levels of the 1 kB TB-RBP mRNA express high levels of TB-RBP. To determine if the cleavage stimulatory factor CstF 64 can modulate the alternative splicing of the TB-RBP pre-mRNA and therefore TB-RBP expression, CstF 64 levels and binding to alternative polyadenylation sites were examined. CstF 64 is abundant in the testis and preferentially binds to a distal site in the TB-RBP pre-mRNA that produces the 3 kb TB-RBP. Moreover, upregulation or overexpression of CstF 64 increases the poly(A) site selection for the 1 kb TB-RBP mRNA. We propose that the level of the polyadenylation factor CstF 64 modulates the level of TB-RBP synthesis in male germ cells by an alternative processing of the TB-RBP pre-mRNA.  相似文献   

13.
Gupta GD  Kumar V 《PloS one》2012,7(3):e33035
Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity.  相似文献   

14.
The DNA/RNA-binding protein, Translin/Testis Brain RNA-binding protein (Translin/TB-RBP), contains a putative GTP binding site in its C-terminus which is highly conserved. To determine if guanine nucleotide binding to this site functionally alters nucleic acid binding, electrophoretic mobility shift assays were performed with RNA and DNA binding probes. GTP, but not GDP, reduces RNA binding by ~50% and the poorly hydrolyzed GTP analog, GTPγS, reduces binding by >90% in gel shift and immunoprecipitation assays. No similar reduction of DNA binding is seen. When the putative GTP binding site of TB-RBP, amino acid sequence VTAGD, is altered to VTNSD by site directed mutagenesis, GTP will no longer bind to TB-RBPGTP and TB-RBPGTP no longer binds to RNA, although DNA binding is not affected. Yeast two-hybrid assays reveal that like wild-type TB-RBP, TB-RBPGTP will interact with itself, with wild-type TB-RBP and with Translin associated factor X (Trax). Transfection of TB-RBPGTP into NIH 3T3 cells leads to a marked increase in cell death suggesting a dominant negative function for TB-RBPGTP in cells. These data suggest TB-RBP is an RNA-binding protein whose activity is allosterically controlled by nucleotide binding.  相似文献   

15.
Translin, a ubiquitous RNA/DNA-binding protein that forms a hetero-octamer together with Translin-associated factor X (TRAX), possesses endoribonuclease activity and plays a physiological role in restricting the size and differentiation of mesenchymal precursor cells. However, the precise role of Translin in epithelial cells remains unclear. Here, we show evidence that Translin restricts the growth of pubertal mammary epithelial cells. The mammary epithelia of Translin-null females exhibited retarded growth before puberty, but highly enhanced growth and DNA synthesis with increased ramification after the onset of puberty. Primary cultures of Translin-null mammary epithelial cells showed augmented DNA synthesis in a ligand-independent and ligand-enhanced manner. Translin-null ovariectomized mice implanted with slow-release estrogen pellets showed enhanced length and ramification of the mammary glands. Mammary epithelial growth was also observed in ovariectomized Translin-null mice implanted with placebo pellets. Luciferase reporter assays using embryonic fibroblasts from Translin-null mice showed unaltered estrogen receptor α function. These results indicate that Translin plays a physiological role in restricting intrinsic growth, beyond mesenchymal cells, of pubertal mammary epithelial cells.  相似文献   

16.
The testis/brain-RNA-binding protein (TB-RBP) spatially and temporally controls the expression of specific mRNAs in developing male germ cells and brain cells, and is implicated in DNA recombination and repair events. We report the 2.65 A crystal structure of mouse TB-RBP. The structure is predominantly alpha-helical and exhibits a novel protein fold and mode of assembly. Crystal symmetry and molecular symmetry combine to form an octet of TB-RBP monomers in the shape of an elongated spherical particle with a large cavity at its center. Amino acid residues that affect RNA and DNA binding are located on the interior surface of the assembled particle, and a putative nucleotide-binding domain that controls RNA binding is located at a dimer interface. Other modes of assembly are suggested for TB-RBP based on our structure and recently reported electron microscopic reconstructions of human TB-RBP.  相似文献   

17.
During oogenesis, maternal mRNAs are synthesised and stored in a translationally dormant form due to the presence of regulatory elements at the 3' untranslated regions (3'UTR). In Xenopus oocytes, several studies have described the presence of RNA-binding proteins capable to repress maternal-mRNA translation. The testis-brain RNA-binding protein (TB-RBP/Translin) is a single-stranded DNA- and RNA-binding protein which can bind the 3' UTR regions (Y and H elements) of stored mRNAs and can suppress in vitro translation of the mRNAs that contain these sequences. Here we report the cloning of the Xenopus homologue of the TB-RBP/Translin protein (X-translin) as well as its expression, its localisation, and its biochemical association with the protein named Translin associated factor X (Trax) in Xenopus oocytes. The fact that this protein is highly present in the cytoplasm from stage VI oocytes until 48 h embryos and that it has been described as capable to inhibit paternal mRNA translation, indicates that it could play an important role in maternal mRNA translation control during Xenopus oogenesis and embryogenesis. Moreover, we investigated X-translin localisation during cell cycle in XTC cells. In interphase, although a weak and diffuse nuclear staining was observed, X-translin was mostly present in the cytoplasm where it exhibited a prominent granular staining. Interestingly, part of X-translin underwent a remarkable redistribution throughout mitosis and associated with centrosomes, which may suggest a new unknown role for this protein in cell cycle.  相似文献   

18.
19.
The Spatial gene is expressed in highly polarized cell types, such as epithelial cells in the thymus, neurons in the brain and germ cells in the testis. In this study, we report the characterization and distribution of Spatial proteins during mouse spermatogenesis. Besides Spatial-epsilon and -delta, we show that the newly described short isoform Spatial-beta is expressed specifically in round spermatids. Using indirect immunofluorescence, we detected Spatial in the cytosol of the early round spermatid. By the end stages of round spermatids, Spatial is concentrated at the opposite face of the acrosome near the nascent flagellum and in the manchette during the elongation process. Finally in mature sperm, Spatial persists in the principal piece of the tail. Moreover, we found that Spatial colocalizes with KIF17b, a testis-specific isoform of the brain kinesin-2 motor KIF17. This colocalization is restricted to the manchette and the principal piece of the sperm tail. Further, coimmunoprecipitation experiments of native proteins from testis lysates confirmed Spatial-KIF17b association through the long Spatial-epsilon isoform. Together, these findings imply a function of Spatial in spermatid differentiation as a new cargo of kinesin KIF17b, in a microtubule-dependent mechanism specific to the manchette and the principal piece of the sperm tail.  相似文献   

20.
Through in silico screens, we have identified many previously uncharacterized genes that display similar expression patterns as the mouse Dazl gene, a germ line-specific marker. Here, we report the identification and characterization of one of these novel genes. TSAP gene encodes a protein with 350 amino acids and contains five ankyrin repeats and a PEST sequence motif. Furthermore, we have generated an anti-TSAP antibody and have used three different approaches (RT-PCR, in situ hybridization, and immunohistochemistry) to investigate the expression profiles of TSAP mRNAs and proteins. TSAP is specifically expressed in testis, but not in other tissues such as ovary. Within the testis, TSAP is detected 10 days after birth and is mainly expressed in spermatocytes (ST) and later stage of germ cells, but not in spermatogonia (SG) or sertoli cells. Therefore, TSAP protein likely plays a role in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号