首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell nucleus and DNA fragmentation are not required for apoptosis   总被引:30,自引:3,他引:27       下载免费PDF全文
Apoptosis is the predominant form of cell death and occurs under a variety of physiological and pathological conditions. Cells undergoing apoptotic cell death reveal a characteristic sequence of cytological alterations including membrane blebbing and nuclear and cytoplasmic condensation. Activation of an endonuclease which cleaves genomic DNA into internucleosomal DNA fragments is considered to be the hallmark of apoptosis. However, no clear evidence exists that DNA degradation plays a primary and causative role in apoptotic cell death. Here we show that cells enucleated with cytochalasin B still undergo apoptosis induced either by treatment with menadione, an oxidant quinone compound, or by triggering APO-1/Fas, a cell surface molecule involved in physiological cell death. Incubation of enucleated cells with the agonistic monoclonal anti-APO-1 antibody revealed the key morphological features of apoptosis. Moreover, in non-enucleated cells inhibitors of endonuclease blocked DNA fragmentation, but not cell death induced by anti-APO-1. These data suggest that DNA degradation and nuclear signaling are not required for induction of apoptotic cell death.  相似文献   

2.
Induced thermotolerance to apoptosis in a human T lymphocyte cell line.   总被引:15,自引:0,他引:15  
A brief exposure to elevated temperatures elicits, in all organisms, a transient state of increased heat resistance known as thermotolerance. The mechanism for this thermotolerant state is unknown primarily because it is not clear how mild hyperthermia leads to cell death. The realization that cell death can occur through an active process of self destruction, known as apoptosis, led us to consider whether thermotolerance provides protection against this mode of cell death. Apoptosis is a common and essential form of cell death that occurs under both physiological and pathological conditions. This mode of cell death requires the active participation of the dying cell and in this way differs mechanistically from the alternative mode of cell death, necrosis. Here we show that mild hyperthermia induces apoptosis in a human leukemic T cell line. This is evidenced by chromatin condensation, nuclear fragmentation and the cleavage of DNA into oligonucleosome size units. DNA fragmentation is a biochemical hallmark of apoptosis and requires the activation of an endogenous endonuclease. The extent of DNA fragmentation was proportional to the severity of heat stress for cells heated at 43 degrees C from 30 to 90 minutes. A brief conditioning heat treatment induced a resistance to apoptosis. This was evident as a resistance to DNA fragmentation and a reduction in the number of apoptotic cells after a heat challenge. Resistance to DNA fragmentation developed during a recovery period at 37 degrees C and was correlated with enhanced heat shock protein (hsp) synthesis. This heat-induced resistance to apoptosis suggests that thermotolerant cells have gained the capacity to prevent the onset of this pathway of self-destruction. An examination of this process in heated cells should provide new insights into the molecular basis of cellular thermotolerance.  相似文献   

3.
Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53-/- mouse embryonic fibroblast cells. We found that RIP-/- mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP-/- cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death.  相似文献   

4.
Detection of apoptosis in tissue sections   总被引:17,自引:0,他引:17  
During the last few years, detection of apoptosis has evolved from a predominantly morphological basis to the use of ever more specific techniques. The methods widely used to visualize DNA fragmentation in tissue sections are now supplemented by a variety of specific antisera against components of the cell death pathways. Essential requirements for apoptosis detection techniques include high sensitivity for apoptotic cells, the ability to differentiate between apoptotic and necrotic cell death and other forms of DNA damage, and the distinction between different stages of the cell death process. In this overview, we will focus on recent technical advances in apoptosis detection covering improvements of in situ DNA fragmentation techniques, as well as pointing out some of the new tools available for the detection of apoptotic cells in tissue.  相似文献   

5.
Programmed cell death (apoptosis) is critical for normal brain morphogenesis and may be triggered by neurotrophic factor deprivation or irreparable DNA damage. Members of the Bcl2 and caspase families regulate neuronal responsiveness to trophic factor withdrawal; however, their involvement in DNA damage-induced neuronal apoptosis is less clear. To define the molecular pathway regulating DNA damage-induced neural precursor cell apoptosis, we have examined the effects of drug and gamma-irradiation-induced DNA damage on telencephalic neural precursor cells derived from wild-type embryos and mice with targeted disruptions of apoptosis-associated genes. We found that DNA damage-induced neural precursor cell apoptosis, both in vitro and in vivo, was critically dependent on p53 and caspase 9, but neither Bax nor caspase 3 expression. Neural precursor cell apoptosis was also unaffected by targeted disruptions of Bclx and Bcl2, and unlike neurotrophic factor-deprivation-induced neuronal apoptosis, was not associated with a detectable loss of cytochrome c from mitochondria. The apoptotic pathway regulating DNA damage-induced neural precursor cell death is different from that required for normal brain morphogenesis, which involves both caspase 9 and caspase 3 but not p53, indicating that additional apoptotic stimuli regulate neural precursor cell numbers during telencephalic development.  相似文献   

6.
Neuronal cell death was studied in the developing retina of the chicken embryo. One of the most characteristic indices of the form of cell death termed apoptosis is regular, apparently internucleosomal fragmentation of DNA. When retinae of eight to seventeen day old chicken embryos were dissected out and the DNA from this tissue size fractionated on agarose gels, fragmentation typical of apoptosis was observed on day ten. The maximal amount of fragmentation was reached around day eleven and twelve and declined from day 15 to 17. These findings correlate in time with previous histological data on retinal cell death and demonstrate for the first time the occurrence of DNA fragmentation typical of apoptosis in the developing nervous system.  相似文献   

7.
The mode of T-lymphoma cell death induced by cold shock was studied. The rewarming of cells at 37 degrees C following a brief period of cold (0 degrees C) resulted in internucleosomal DNA fragmentation. The cells underwent cold shock-mediated apoptosis only at a reduced (2%) serum concentration. The apoptosis was not blocked by macromolecular synthesis inhibitors such as cycloheximide and antinomycin D, or by Quin-2. EGTA per se was responsible for the initiation of cell death. Colchicine also induced internucleosomal fragmentation of DNA. Our findings suggest that cold shock induced apoptosis is associated with low temperature mediated disruption of microtubules. The role of Ca2+ and growth factors in cold shock induced cell death is discussed.  相似文献   

8.
Apoptosis is a prominent mechanism of programmed cell death in lymphocytes and in cancer cells not previously found in neurons. We have identified apoptosis and internucleosomal DNA degradation in cultures of cerebellar granule neurons. 1-methyl-4-phenylpyridinium, a selective neurotoxin that destroys the dopaminergic nigrostriatal pathway and results in a parkinsonian syndrome, increases the rate of apoptosis and kills cerebellar granule cells in culture via induction of programmed cell death. Inhibition of gene expression in granule cells with cycloheximide prevents the MPP(+)-induced apoptosis and the DNA fragmentation. Our findings demonstrate a new pathway of neuron death and suggest the possibility that neurodegenerative diseases may result from the inappropriate activation of programmed cell death by apoptosis.  相似文献   

9.
Oxidative stress induces caspase-independent retinal apoptosis in vitro   总被引:14,自引:0,他引:14  
Apoptosis is the mode of cell death in retinitis pigmentosa (RP), a heterogeneous group of retinal degenerations. The activation of the caspase proteases forms a pivotal step in the initiation and execution phase of apoptosis in many cells. Inhibition of caspases has been reported to prevent apoptosis in many model systems. However, we demonstrate the absence of caspase activation during retinal cell apoptosis in vitro which involves phosphatidylserine (PS) externalisation, DNA nicking and cell shrinkage. In addition, zVAD-fmk, DEVD-CHO and BD-fmk, inhibitors of the caspases, were unable to alter the characteristics or kinetics of apoptosis, implying that retinal cell death in vitro follows a caspase-independent pathway. We have previously demonstrated the ability of reactive oxygen species (ROS) to act as mediators of retinal cell apoptosis in vitro as well as the ability of antioxidants to prevent retinal cell apoptosis. Here we demonstrate the oxidative inactivation of caspases in this model of retinal apoptosis and provide evidence for an oxidative stress driven cell death pathway that does not involve caspase activity and which retains key features of apoptotic cell death. Furthermore, our data indicates that apoptotic events such as PS exposure, DNA nicking and cell shrinkage may occur independently of caspase activity.  相似文献   

10.
Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes   总被引:7,自引:0,他引:7  
Two ionophores specific for K+, valinomycin and beauvericin, induce a type of cell death very similar to apoptosis due to tumor necrosis factor (TNF alpha). Both ionophores cause cytolysis accompanied by internucleosomal DNA fragmentation of the dying cell into units of 200 base pairs. Morphologically, the cell death appears to consist of a mixture of nuclear apoptotic changes and cytoplasmic necrotic changes. As in the case for TNF alpha-mediated death, metabolic inhibitors have no effect on the course of cell death, but DNA fragmentation and cytolysis are decreased by the endonuclease inhibitor, zinc. Beauvericin and valinomycin trigger an increase in the cytoplasmic calcium concentration, most likely due to release of calcium from intracellular stores, and chelation of cytoplasmic calcium with quin-2 inhibits DNA fragmentation. Thus, these ionophores set off apoptosis through a calcium-activatable endonuclease, suggesting that other nonphysiological toxins might also cause apoptosis through their ability to indirectly elevate the cytoplasmic calcium concentration, without the need to invoke specific surface receptors.  相似文献   

11.
Previous studies have suggested that cells undergo apoptosis in response to dengue virus infection. However, the potential significance of dengue virus-induced apoptosis and the pathways are still not clearly defined. In this study, comparative analysis of dengue virus-induced apoptosis in BHK, H1299, HUH-7 and Vero cell lines was carried out. We show here that infection of BHK, HUH-7 and Vero cell lines with dengue type 1 virus (DEN1V) induces cell death typical of apoptosis. Virus-induced cell death was assayed by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, detection of oligonucleosomal DNA fragmentation, DNA content analysis and assay for the externalization of phosphatidylserine residues. Detailed study of dengue virus infection in HUH-7 cells showed activation of cell death via the mitochondrial pathway causing lowering of mitochondrial transmembrane potential (DeltaPsim) in HUH-7 cells. Interestingly, in the p53-deficient cell line, H1299, apoptosis was largely undetectable compared with the other cell lines used; suggesting that a p53- and mitochondria-mediated cell death pathway may play an important role in dengue virus-induced apoptosis.  相似文献   

12.
Poly(ADP-ribosylation) and apoptosis   总被引:5,自引:0,他引:5  
Poly(ADP-ribosylation) is a post-translational modification playing a relevant role in DNA damage recovery, DNA replication and viral integration. Several reports also suggest a modulation of this process during cell death by apoptosis. The aim of this review is to discuss the possible involvement of poly(ADP-ribosylation) during apoptosis, by dealing with general considerations on apoptosis, and further examining the correlation between NAD consumption and cell death, the regulation of poly(ADP-ribose) metabolism in apoptotic cells, the effect of poly(ADP-ribose) polymerase inhibition on cell death occurrence and the use of enzyme cleavage as a marker of apoptosis. Finally, the future prospects of the research in this area will be addressed.  相似文献   

13.
14.
The nonhomologous DNA end-joining pathway (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs), is essential for maintaining genomic stability. Knockout animals for components in this pathway demonstrate a distinct pattern of cell death in the developing brain. Here we demonstrate that cell death is also present in the developing retina of E14.5 Ku86-deficient mouse embryos, suggesting that the increase in cell death in the retina is associated with chromosome breaks. In the adult retina, we do not find continuing apoptosis, but interestingly, we find decreased numbers of total neuronal cells. This suggests that the increased retinal apoptosis during embryogenesis causes the reduction in cell numbers observed in the adult retina. This analysis of the retina provides the first opportunity to formally test the hypothesis that embryonic apoptosis accounts for reduced total cell numbers in adult Ku86-/- mice.  相似文献   

15.
In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast-reactive oxygen species (ROS)-can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.  相似文献   

16.
Most efforts thus far have been devoted to develop apoptosis inducers for cancer treatment. However, apoptotic pathway deficiencies are a hallmark of cancer cells. We propose that one way to bypass defective apoptotic pathways in cancer cells is to induce necrotic cell death. Here we show that selective induction of necrotic cell death can be achieved by activation of the DNA damage response pathways. While β-lapachone induces apoptosis through E2F1 checkpoint pathways, necrotic cell death can be selectively induced by β-lapachone in a variety of cancer cells. We found that β-lapachone, unlike DNA damaging chemotherapeutic agents, transiently activates PARP1, a main regulator of the DNA damage response pathway, both in vitro and in vivo. This occurs within minutes of exposure to β-lapachone, resulting in selective necrotic cell death. Inhibition of PAR blocked β-lapachone-induced necrosis. Furthermore, necrotic cell death induced by β-lapachone was significantly reduced in PARP1 knockout cell lines. Our data suggest that selective necrotic cell death can be induced through activation of DNA damage response pathways, supporting the idea of selective necrotic cell death as a therapeutic strategy  相似文献   

17.
Excitotoxicity is a process where glutamate or other excitatory amino acids induce neuronal cell death. Emerging evidence suggests that apoptosis plays a key part in excitotoxic neurodegeneration. The DNA fragmentation factor 45 (DFF45 or ICAD) is a subunit of a heterodimeric DNase complex crucial for DNA fragmentation during apoptosis. Using a DFF45 mutant mouse model, we previously found that DFF45 deficient cells are more resistant to apoptosis than normal control cells. To investigate whether the lack of DFF45 may attenuate neuronal cell death induced by excitotoxicity, we compared kainic acid-induced seizure behavior and neuronal cell death in DFF45 mutant and wild-type control mice. We found that the mutant mice exhibit similar kainic acid-induced seizure severity compared to control mice. However, DFF45 mutant mice are more resistant than control mice to kainic acid-induced CA3 neuronal cell death. Interestingly, residual DNA degradation can be detected in the hippocampus of DFF45 mutant mice that exhibit KA-induced lesions. Our results suggest that a lack of DFF45 can lead to neuronal resistance to excessive activity-induced toxicity.  相似文献   

18.
19.
Chronic inflammation is associated with inducible nitric oxide synthase expression in infiltrating and resident cells (epithelia, neurons) and an exaggerated release of nitric oxide. NO can induce apoptosis in macrophages and tumour cell lines. We investigated whether NO induced cell death in an epithelial (T84) cell fine via apoptosis. Culture T84 cells were exposed to a bolus of NO (40 or 80 muM) dissolved in Hank's balanced salt solution (HBSS) supplemented with 10% fetal calf serum (FCS). After incubation for 4 h at 37( degrees )C in 5% CO(2), cells were either stained for DNA fragmentation with the TdT-mediated dUTP-biotin nick end labelling (TUNEL) method, or cytosolic DNA fragments quantified by a cell death detection ELISA assay. Nitric oxide induced apoptosis in a dose-dependent manner which preceded frank cell death (failure to exclude Trypan blue). These data suggest that epithelial cell death may be NO dependent and via apoptosis, in states of gut inflammation.  相似文献   

20.
Nitric oxide (NO) can induce apoptosis in a variety of cell types. A non-toxic concentration of nitric oxide under normal oxygen conditions triggered cell death under hypoxic conditions (1.5% O(2)) in fibroblasts. Nitric oxide administered during hypoxia induced the release of cytochrome c, caspase-9 activation, and the loss of mitochondrial membrane potential followed by DNA fragmentation and lactate dehydrogenase release (markers of cell death). Bcl-X(L) protected cells from nitric oxide-induced apoptosis during hypoxia by preventing the release of cytochrome c, caspase-9 activation, and by maintaining a mitochondrial membrane potential. Murine embryonic fibroblasts from bax(-/-) bak(-/-) mice exposed to nitric oxide during hypoxia did not die, indicating that pro-apoptotic Bcl-2 family members are required for NO-induced apoptosis during hypoxia. The nitric oxide-induced cell death during hypoxia was independent of cGMP and peroxynitrite. Cells devoid of mitochondrial DNA (rho secondary-cells) lack a functional electron transport chain and were resistant to nitric oxide-induced cell death during hypoxia, suggesting that a functional electron transport chain is required for nitric oxide-induced apoptosis during hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号