首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Key message

The wheat eIF2 homolog, TaIF2, is induced by the stripe rust pathogen CYR 32 at an early stage of inoculation and is related to the innate immunity resistance level in wheat.

Abstract

The initiation of translation represents a critical control point in the regulation of gene expression in all organisms. We previously identified an upregulated EST S186 (EL773056) from an SSH-cDNA library of the Shaanmai 139 strain of wheat (Triticum aestivum) infected with Puccinia striiformis (Pst). In the present work, we isolated a cDNA clone and identified it as a wheat IF2 homolog. This cDNA consisted of 1,314 nucleotides and contained an open reading frame of 795 nucleotides encoding a polypeptide of 254 amino acids. The amino acids represent a conserved domain in EF-Tu, mtIF2-II, and mtIF2-Ivc. The alignment result showed that it maybe a partial cDNA of the initiation factor 2/eukaryotic initiation factor 5B (IF2/eIF5B) superfamily gene. Paradoxically, results of a Swiss-model analysis suggesting a low QMEAN Z-score implied that it was a membrane protein. Quantitative RT-PCR studies confirmed that the wheat eIF2 (TaIF2) homolog was differentially expressed in three near-isogenic lines. Critical time points for the induction of resistance by inoculation with Pst CYR32 in YrSM139-1B + YrSM139-2D immune resistance genotype occurred at 1 and 3 dpi (days post-infection). RNAi test showed that the inoculated BSMV-IF2 leaves of Shaanmai 139 showed obvious cell death after 15 days of inoculation with CYR 32. qRT-PCR analysis of the target gene in cDNA samples isolated from BSMV-IF2-Pst, BSMV-0-Pst and Pst infected leaves confirmed that the expression of TaIF2 is suppressed by BSMV-IF2 at 3 dpi. This suggested that TaIF2/eIF5B plays an important role in the mechanism of innate immunity to stripe rust pathogen.  相似文献   

3.
西科麦2028是地理远缘小麦材料的杂交后代,具有突出的抗条锈病性能。为了解西科麦2028对小麦条锈病的抗性遗传规律,以西科麦2028和铭贤169的杂交群体为研究对象,采用我国目前小麦条锈菌流行小种CYR31、CYR32、CYR33、Su11-4对供试群体进行成株期接种,分析杂交后代的抗病性及分布情况。结果表明:西科麦2028对CYR31的抗病性由3对显性基因控制;对CYR32由2对显性和1对隐性基因控制;对CYR33由1对显性基因控制;对Su11-4由1对显性和1对隐性基因控制。  相似文献   

4.
LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like). Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing) technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection.  相似文献   

5.
6.
Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants.  相似文献   

7.
Ren Y  Li SR  Li J  Zhou Q  DU XY  Li TJ  Yang WY  Zheng YL 《遗传》2011,33(11):1263-1270
小麦条锈病是影响杂交小麦普及推广的重要因素。文章利用基因推导法和SSR分子标记技术,研究了温光型两系杂交小麦恢复系MR168的抗条锈性遗传规律及其控制基因染色体位置。结果表明,MR168对CY29、CY31、CY32、CY33等条锈菌生理小种表现高抗至免疫;对SY95-71/MR168杂交组合的正反交F1、BC1、F2和F3群体分单株接种鉴定显示,MR168对CY32号小种的抗性受1对显性核基因控制,该抗病基因来源于春小麦品种辽春10号。利用集群分离分析法(Bulked segregant analysis,BSA)和简单重复序列(Simple sequence repeat,SSR)分子标记分析抗病亲本MR168、感病亲本SY95-71及183个F2代单株,发现了与MR168抗条锈病基因连锁的5个微卫星标记Xgwm273、Xgwm18、Xbarc187、Xwmc269、Xwmc406,并将该基因初步定位在1BS着丝粒附近,暂命名为YrMR168;构建了包含YrMR168的SSR标记遗传图谱,距离YrMR168最近的两个微卫星位点是Xgwm18和Xbarc187,遗传距离分别为1.9 cM和2.4 cM,这两个微卫星标记可用于杂交小麦抗条锈病分子标记辅助育种。  相似文献   

8.
小麦类甜蛋白基因(TaTLP1)的克隆、定位和蛋白表达   总被引:2,自引:0,他引:2  
  相似文献   

9.
根据大麦MLa基因的保守区域设计了4对家族性引物.通过用家族性引物对小麦(Triticum aestivum L.)抗白粉病品系TAM104R在接种和未接种两种条件下的基因差异表达进行RT-PCR分析,获得了一个在接种条件下特异表达的基因片段RJ-3-3L,并用RACE方法获得了其cDNA全长,命名为TaMla1.序列比对显示:TaMlal与大麦MLa位点的基因家族成员具有高度同源性,TaMla1编码的氨基酸功能基序扫描表明其为一个CC-NBS-LRR型抗病蛋白.用一套中国春缺-四体材料将TaMla1定位到了小麦的1A染色体上,这正是大麦MLa基因位点在小麦中的同源区段所在的染色体.这些结果表明,TaMla1为一个类MLa抗白粉病基因.同时我们还获得了一个在不接种条件下特异表达的基因片段RW-2-3L,序列分析表明它与MLa基因也高度同源,推测其可能是一个小麦白粉病的敏感基因或抗性负调控因子.  相似文献   

10.
11.
A full-length cDNA clone encoding a phosphoprotein (pp56) involved in the regeneration of rice (Oryza sativa L.)-cultured suspension cells was isolated by screening a rice cultured suspension cell cDNA library. The 1558-bp cDNA sequence contains an ORF encoding an acidic (pI 4.38) protein of 424 amino acids (47.9 kDa), sharing 70-93% and 50-53% homology with other plant and mammalian calreticulins, respectively. Sequence analysis of the cDNA clone revealed several significant conserved motifs, including a calreticulin family repeat motif in the central domain and two calreticulin family motifs in the N-domain, indicating that this gene is a rice calreticulin (CRO1). The CRO1 gene in long-term rice cultured suspension cells shows constitutive expression in both suspension culture and regeneration media. In contrast, expression of the CRO1 gene in short-term rice cultured suspension cells, which possess regeneration potential, is increased dramatically when these cells are transferred to the regeneration medium. After approximately 2 weeks in the regeneration medium, the expression of the CRO1 gene reverts to constitutive levels. These results demonstrate the presence of calreticulin in rice cultured suspension cells and its developmental regulation during the regeneration of rice cultured suspension cells.  相似文献   

12.
根据大麦MLa基因的保守区域设计了4对家族性引物。通过用家族性引物对小麦(Triticum aestivum L.)抗白粉病品系TAM104R在接种和未接种两种条件下的基因差异表达进行RT-PCR分析,获得了一个在接种条件下特异表达的基因片段RJ-3-3L, 并用RACE方法获得了其cDNA全长,命名为TaMla1。序列比对显示: TaMla1与大麦MLa位点的基因家族成员具有高度同源性,TaMla1编码的氨基酸功能基序扫描表明其为一个CC-NBS-LRR型抗病蛋白。用一套中国春缺-四体材料将TaMla1定位到了小麦的1A染色体上,这正是大麦MLa基因位点在小麦中的同源区段所在的染色体。这些结果表明,TaMla1为一个类MLa抗白粉病基因。同时我们还获得了一个在不接种条件下特异表达的基因片段RW-2-3L,序列分析表明它与MLa 基因也高度同源,推测其可能是一个小麦白粉病的敏感基因或抗性负调控因子。  相似文献   

13.
14.
Yang WY  Yu Y  Zhang Y  Hu XR  Wang Y  Zhou YC  Lu BR 《Hereditas》2003,139(1):49-55
Stripe rust is one of the most destructive diseases for wheat crops in China. Two stripe rust physiological strains, i.e. CYR30 (intern. name: 175E191) and CYR31 (intern. name: 293E175) have been the dominant and epidemic physiological strains since 1994. One Aegilops tauschii accession (SQ-214) from CIMMYT was found immune from or highly resistant to Chinese new stripe rust races CYR30 and CYR31 at adult stage. SQ-214 was crossed with a highly susceptible Ae. tauschii accession As-80. Analysis of data from F1-F2 populations of SQ-214/As-80 revealed that the resistance was controlled by a single dominant gene. To exploit the resistance for wheat breeding, SQ-214 was crossed with Chinese Spring (CS) and backcrossed by two Chinese commercial wheat varieties MY26 and SW3243. The resistance from SQ-214 was suppressed in the F1 hybrids (CS/SQ-214) and the F2 population of CS/SQ-214//MY26. However, the resistance of SQ-214 was expressed in several F2 individuals of CS/SQ-214//SW3243. Eleven advanced lines with high level of resistance to the Chinese stripe rust CYR30 and CYR31 have been developed. This result suggested that SW3243 does not suppress the expression of the Chinese stripe rust and should be used as wheat germplasm for exploiting resistance of Ae. tauschii in wheat breeding. The gliadin electrophoretic pattern of the eleven advanced lines with high stripe rust resistances was compared with their parents SQ-214, CS and SW3243 by acid polyacrylamide gel electrophoresis. The omega-gliadin bands of Gli-Dt1 in Ae. tauschii SQ-214 were transferred to some advanced lines and freely expressed in common wheat genetic background. One of advanced lines possesses a null Gli-D1 allele, where the omega-gliadin bands encoding by the Gli-D1 allele were absent. The potential utilization of this advanced line for wheat quality and stripe rust resistance breeding is also discussed in this paper.  相似文献   

15.
小麦Beclin1类似基因的分子克隆与鉴定   总被引:2,自引:0,他引:2  
以小麦 簇毛麦 (Triticumaestivum Haynal diavillosa) 6VS/6AL易位系 92R1 3 7为材料 ,应用mRNA差异显示和快速扩增cDNA末端 (rapidam plificationofcDNAends,RACE)技术对在白粉菌(Blumeriagraminis)诱导后表达增强的基因进行了克隆。分离到一个与拟南芥Beclin1类似基因同源的全长cDNA克隆 ,暂定名为小麦Beclin1类似基因。它编码 441个氨基酸组成的多肽。二级结构推导显示与人类Beclin相似 ,具有螺旋结构。Northern杂交分析表明 ,小麦Beclin1类似基因在白粉菌诱导后表达增强。Southern分析证明 ,小麦Beclin1类似基因为单拷贝基因  相似文献   

16.
17.
用mRNA差异显示技术在含有抗白粉病基因Pm21的小麦(Tri ticum aestivum L.) -簇毛麦(Haynaldia villosa) 6VS /6AL易位系92R137中分离与抗白粉病相关的基因,获得一个命名为TaPK1的全长cDNA克隆.序列分析表明,它与大豆(Glycine max (L.) Merr.)蛋白激酶基因GmPK6高度同源.经推测,TaPK1 编码416个氨基酸的多肽,属丝氨酸-苏氨酸蛋白激酶家族,并具酪氨酸激酶特性.TaPK1是从小麦中分离的新基因.  相似文献   

18.
一个小麦丝氨酸—苏氨酸蛋白激酶基因的克隆和分析   总被引:8,自引:0,他引:8  
用mRNA差异显示技术在含有抗白粉病基因Pm2 1的小麦 (TriticumaestivumL .)_簇毛麦 (Haynaldiavillosa)6VS/ 6AL易位系 92R137中分离与抗白粉病相关的基因 ,获得一个命名为TaPK1的全长cDNA克隆。序列分析表明 ,它与大豆 (Glycinemax (L .)Merr.)蛋白激酶基因GmPK6高度同源。经推测 ,TaPK1编码 416个氨基酸的多肽 ,属丝氨酸_苏氨酸蛋白激酶家族 ,并具酪氨酸激酶特性。TaPK1是从小麦中分离的新基因。  相似文献   

19.
A full-size cDNA clone (1614 bp) encoding calreticulin was isolated from a PCR-based cDNA library of maize in vitro zygotes. Calreticulin is a major Ca2+ storage protein located mainly in the lumen of the endoplasmic reticulum but also in the nucleus and/or cytoplasm of some cells. A differential screening between cDNA libraries originating from 104 in vitro zygotes (18 h after in vitro fertilization) and 128 unfertilized egg cells was performed to isolated newly expressed genes or genes expressed more abundantly after fertilization. The expression of the isolated cDNA clone is enhanced after fertilization and strongly correlated to cell division. Sequence comparison to a shorter maize calreticulin cDNA isolated from a conventional cDNA library proves the ability and reproducibility of the recently described method for PCR based cDNA library construction from a few plant cells [12]. It is further shown that calreticulins in maize are probably transcribed from a small gene family differentially expressed in abundance in diverse tissues. The deduced amino acid sequence encodes an acidic protein (pI 4.17) of 48 kDa sharing 77–92% and 50–54% homology to other plant and animal calreticulins, respectively. The described calreticulin gene represents to our knowledge the first cDNA clone isolated from a RT/PCR cDNA library originating from only a few plant cells and is the first gene isolated from zygotes of higher plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号