首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Thioredoxin (TRX) catalyzes the reduction of disulfide bonds in proteins via the NADPH-dependent thioredoxin reductase system. Reducing the disulfide bonds of allergenic proteins in food by TRX lowers the allergenicity. We established in this study a method to prepare TRX-enriched extracts from the edible yeast, Saccharomyces cerevisiae, on a large and practical scale, with the objective of developing TRX-containing functional foods to mitigate food allergy. Treating with the yeast TRX-enriched extracts together with NADPH and yeast thioredoxin reductase enhanced the pepsin cleavage of β-lactoglobulin and ovomucoid (OM). We also examined whether yeast TRX can mitigate the allergenicity of OM by conducting immediate allergy tests on guinea pigs. The treatment with TRX reduced the anaphylactic symptoms induced by OM in these tests. These results indicate that yeast TRX was beneficial against food allergy, raising the possibility that yeast TRX-enriched extracts can be applied to food materials for mitigating food allergy.  相似文献   

2.
The so-called thioredoxin system, thioredoxin (Trx), thioredoxin reductase (Trr), and NADPH, acts as a disulfide reductase system and can protect cells against oxidative stress. In Saccharomyces cerevisiae, two thioredoxins (Trx1 and Trx2) and one thioredoxin reductase (Trr1) have been characterized, all of them located in the cytoplasm. We have identified and characterized a novel thioredoxin system in S. cerevisiae. The TRX3 gene codes for a 14-kDa protein containing the characteristic thioredoxin active site (WCGPC). The TRR2 gene codes for a protein of 37 kDa with the active-site motif (CAVC) present in prokaryotic thioredoxin reductases and binding sites for NADPH and FAD. We cloned and expressed both proteins in Escherichia coli, and the recombinant Trx3 and Trr2 proteins were active in the insulin reduction assay. Trx3 and Trr2 proteins have N-terminal domain extensions with characteristics of signals for import into mitochondria. By immunoblotting analysis of Saccharomyces subcellular fractions, we provide evidence that these proteins are located in mitochondria. We have also constructed S. cerevisiae strains null in Trx3 and Trr2 proteins and tested them for sensitivity to hydrogen peroxide. The Deltatrr2 mutant was more sensitive to H2O2, whereas the Deltatrx3 mutant was as sensitive as the wild type. These results suggest an important role of the mitochondrial thioredoxin reductase in protection against oxidative stress in S. cerevisiae.  相似文献   

3.
The importance of redox‐regulation in Arabidopsis thaliana roots has been investigated through the identification of the proteins interacting with thioredoxin (TRX), an ubiquitous thiol‐disulfide reductase. We have applied a proteomic approach based on affinity chromatography on a monocysteinic mutant of plastidial y‐type TRX used as a bait to trap putative partners in a crude extract of root proteins. Seventy‐two proteins have been identified, functioning mainly in metabolism, detoxification and response to stress, protein processing and signal transduction. This study allowed us to isolate 24 putative new targets and to propose the mevalonic acid‐dependent biosynthesis of isoprenoids as a new redox‐mediated process. The redox‐regulation of phenylpropanoid biosynthesis is also suggested, three enzymes of this pathway being retained on the column. We also provided experimental evidence that phenylammonia‐lyase was enzymatically more active when reduced by TRXy in root crude extract. Among the high number of partners involved in defense against stress we isolated from the column, we focused on plastidial monodehydroascorbate reductase and showed that its activity was dramatically increased in vitro in the presence of DTT‐reduced TRXy1 in root crude extracts. Our data strongly suggest that TRXy1 could be the physiological regulator of monodehydroascorbate reductase in root plastids.  相似文献   

4.
E J Stewart  F Aslund    J Beckwith 《The EMBO journal》1998,17(19):5543-5550
Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur.  相似文献   

5.
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been ascribed to a new family of protein disulfide oxidoreductases (PDOs). We report on the characterization of SsPDO, isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. SsPDO was cloned and expressed in Escherichia coli. We revealed that SsPDO is the substrate of a thioredoxin reductase in S. solfataricus (K(M) 0.3 microm) and not thioredoxins (TrxA1 and TrxA2). SsPDO/S. solfataricus thioredoxin reductase constitute a new thioredoxin system in aerobic thermophilic archaea. While redox (reductase, oxidative and isomerase) activities of SsPDO point to its central role in the biochemistry of cytoplasmic disulfide bonds, chaperone activities also on an endogenous substrate suggest a potential role in the stabilization of intracellular proteins. Northern and western analysis have been performed in order to analyze the response to the oxidative stress.  相似文献   

6.
7.
The NADPH-dependent enzymic reduction of disulfide bonds in human choriogonadotropin and its two subunits, alpha and beta, was examined with thioredoxin and thioredoxin reductase from Escherichia coli. With 12 muM thioredoxin and 0.1 muM thioredoxin reductase at pH 7 all disulfide bonds in the alpha subunit could be reduced in 15 min. The reduction of disulfide bonds was recorded by a simple spectrophotometric assay at 340 nm, which allowed quantitation of the reduction rate and the number of disulfide bonds reduced. Partial reduction of the alpha subunit with thioredoxin followed by S-carboxymethylation with iodol[2-3H]acetic acid and analysis of tryptic peptides indicated that all S-S bonds in the alpha subunit were surface oriented and equally reactive. The usefulness of thioredoxin reduction of disulfide bonds as a chemical probe of protein structure was shown by the much slower reaction of disulfide bonds in the intact hormone as compared to its two biologically inactive subunits.  相似文献   

8.
The majority of disulfide-linked cytosolic proteins are thought to be enzymes that transiently form disulfide bonds while catalyzing oxidation-reduction (redox) processes. Recent evidence indicates that reactive oxygen species can act as signaling molecules by promoting the formation of disulfide bonds within or between select redox-sensitive proteins. However, few studies have attempted to examine global changes in disulfide bond formation following reactive oxygen species exposure. Here we isolate and identify disulfide-bonded proteins (DSBP) in a mammalian neuronal cell line (HT22) exposed to various oxidative insults by sequential nonreducing/reducing two-dimensional SDS-PAGE combined with mass spectrometry. By using this strategy, several known cytosolic DSBP, such as peroxiredoxins, thioredoxin reductase, nucleoside-diphosphate kinase, and ribonucleotide-diphosphate reductase, were identified. Unexpectedly, a large number of previously unknown DSBP were also found, including those involved in molecular chaperoning, translation, glycolysis, cytoskeletal structure, cell growth, and signal transduction. Treatment of cells with a wide range of hydrogen peroxide concentrations either promoted or inhibited disulfide bonding of select DSBP in a concentration-dependent manner. Decreasing the ratio of reduced to oxidized glutathione also promoted select disulfide bond formation within proteins from cytoplasmic extracts. In addition, an epitope-tagged version of the molecular chaperone HSP70 forms mixed disulfides with both beta4-spectrin and adenomatous polyposis coli protein in the cytosol. Our findings indicate that disulfide bond formation within families of cytoplasmic proteins is dependent on the nature of the oxidative insult and may provide a common mechanism used to control multiple physiological processes.  相似文献   

9.
Protein disulfide isomerases (PDIs) are molecular chaperones that contain thioredoxin (TRX) domains and aid in the formation of proper disulfide bonds during protein folding. To identify plant PDI-like (PDIL) proteins, a genome-wide search of Arabidopsis (Arabidopsis thaliana) was carried out to produce a comprehensive list of 104 genes encoding proteins with TRX domains. Phylogenetic analysis was conducted for these sequences using Bayesian and maximum-likelihood methods. The resulting phylogenetic tree showed that evolutionary relationships of TRX domains alone were correlated with conserved enzymatic activities. From this tree, we identified a set of 22 PDIL proteins that constitute a well-supported clade containing orthologs of known PDIs. Using the Arabidopsis PDIL sequences in iterative BLAST searches of public and proprietary sequence databases, we further identified orthologous sets of 19 PDIL sequences in rice (Oryza sativa) and 22 PDIL sequences in maize (Zea mays), and resolved the PDIL phylogeny into 10 groups. Five groups (I-V) had two TRX domains and showed structural similarities to the PDIL proteins in other higher eukaryotes. The remaining five groups had a single TRX domain. Two of these (quiescin-sulfhydryl oxidase-like and adenosine 5'-phosphosulfate reductase-like) had putative nonisomerase enzymatic activities encoded by an additional domain. Two others (VI and VIII) resembled small single-domain PDIs from Giardia lamblia, a basal eukaryote, and from yeast. Mining of maize expressed sequence tag and RNA-profiling databases indicated that members of all of the single-domain PDIL groups were expressed throughout the plant. The group VI maize PDIL ZmPDIL5-1 accumulated during endoplasmic reticulum stress but was not found within the intracellular membrane fractions and may represent a new member of the molecular chaperone complement in the cell.  相似文献   

10.
秦童  黄震 《植物学报》2019,54(1):119-132
硫氧还蛋白(Trx)属于巯基-二硫键氧化还原酶家族, 通过作用于底物蛋白侧链2个半胱氨酸残基之间的二硫键(还原、异构和转移)来调控胞内蛋白的结构和功能。叶绿体Trx系统包括Trx及Trx类似蛋白、铁氧还蛋白(Fd)依赖的硫氧还蛋白还原酶(FTR)和还原型烟酰腺嘌呤二核苷磷酸(NADPH)依赖的硫氧还蛋白还原酶C (NTRC)。除了基质蛋白酶类活性变化及叶绿体蛋白的转运受Trx系统调控之外, 在叶绿体中还存在1条跨类囊体膜的还原势传递途径, 把基质Trx的还原势经跨膜转运蛋白介导, 最终传递给类囊体腔蛋白。FTR和NTRC共同作用维持叶绿体的氧化还原平衡。该文对叶绿体硫氧还蛋白系统的调节机制进行了综述, 同时讨论了叶绿体硫氧还蛋白系统对维持植物光合效率的重要意义。  相似文献   

11.
Penicillium chrysogenum is an important producer of penicillin antibiotics. A key step in their biosynthesis is the oxidative cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N by the enzyme isopenicillin N synthase (IPNS). bis-ACV, the oxidized disulfide form of ACV is, however, not a substrate for IPNS. We report here the characterization of a broad-range disulfide reductase from P. chrysogenum that efficiently reduces bis-ACV to the thiol monomer. When coupled in vitro with IPNS, it converts bis-ACV to isopenicillin N and may therefore play a role in penicillin biosynthesis. The disulfide reductase consists of two protein components, a 72-kDa NADPH-dependent reductase, containing two identical subunits, and a 12-kDa general disulfide reductant. The latter reduces disulfide bonds in low-molecular-weight compounds and in proteins. The genes coding for the reductase system were cloned and sequenced. Both possess introns. A comparative analysis of their predicted amino acid sequences showed that the 12-kDa protein shares 26 to 60% sequence identity with thioredoxins and that the 36-kDa protein subunit shares 44 to 49% sequence identity with the two known bacterial thioredoxin reductases. In addition, the P. chrysogenum NADPH-dependent reductase is able to accept thioredoxin as a substrate. These results establish that the P. chrysogenum broad-range disulfide reductase is a member of the thioredoxin family of oxidoreductases. This is the first example of the cloning of a eucaryotic thioredoxin reductase gene.  相似文献   

12.
Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure of this mixed disulfide shows a conserved hydrophobic motif in thioredoxin interacting with a sequence of residues from BASI through van der Waals contacts and backbone-backbone hydrogen bonds. The observed structural complementarity suggests that the recognition of features around protein disulfides plays a major role in the specificity and protein disulfide reductase activity of thioredoxin. This novel insight into the function of thioredoxin constitutes a basis for comprehensive understanding of its biological role. Moreover, comparison with structurally related proteins shows that thioredoxin shares a mechanism with glutaredoxin and glutathione transferase for correctly positioning substrate cysteine residues at the catalytic groups but possesses a unique structural element that allows recognition of protein disulfides.  相似文献   

13.
Kyung Ok Jun 《FEBS letters》2009,583(17):2804-2810
Previously we reported that in vitro translation activity in extracts of Saccharomyces cerevisiae was stimulated by dithiothreitol (DTT) and further increased by the addition of thioredoxin (TRX1) [Choi, S.K. (2007) Thioredoxin-mediated regulation of protein synthesis by redox in Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 35, 36-40]. To identify the pathway affecting translation, we cloned and purified thioredoxin reductase 1 (TRR1), thioredoxin reductase 2 (TRR2), glutaredoxin 1 (GRX1) and glutaredoxin reductase 1 (GLR1) as fusion proteins. Thioredoxin-mediated activation of translation was more effectively stimulated by NADPH or NADH than by DTT. Moreover, addition of TRR1 led to a further increase of translation in the presence of thioredoxin plus NADPH. These findings indicate that redox control via the thioredoxin-thioredoxin reductase system plays an important role in the regulation of translation.  相似文献   

14.
APS reductase from Pseudomonas aeruginosa has been shown to form a disulfide-linked adduct with mono-cysteine variants of Escherichia coli thioredoxin and Chlamydomonas reinhardtii thioredoxin h1. These adducts presumably represent trapped versions of the intermediates formed during the catalytic cycle of this thioredoxin-dependent enzyme. The oxidation-reduction midpoint potential of the disulfide bond in the P. aeruginosa APS reductase/C. reinhardtii thioredoxin h1 adduct is -280 mV. Site-directed mutagenesis and mass spectrometry have identified Cys256 as the P. aeruginosa APS reductase residue that forms a disulfide bond with Cys36 of C. reinhardtii TRX h1 and Cys32 of E. coli thioredoxin in these adducts. Spectral perturbation measurements indicate that P. aeruginosa APS reductase can also form a non-covalent complex with E. coli thioredoxin and with C. reinhardtii thioredoxin h1. Perturbation of the resonance Raman and visible-region absorbance spectra of the APS reductase [4Fe-4S] center by either APS or the competitive inhibitor 5'-AMP indicates that both the substrate and product bind in close proximity to the cluster. These results have been interpreted in terms of a scheme in which one of the redox-active cysteine residues serves as the initial reductant for APS bound at or in close proximity to the [4Fe-4S] cluster.  相似文献   

15.
Cumulative oxidative damage to proteins coupled with a decrease in repair has been implicated in the pathology of several neurodegenerative diseases. Herein we report that peroxynitrite-induced disulfides in porcine brain tubulin are repaired by the thioredoxin reductase system composed of rat liver thioredoxin reductase, human or Escherichia coli thioredoxin, and NADPH. Disulfide bonds between the alpha-tubulin and the beta-tubulin subunits were repaired by thioredoxin reductase as determined by Western blot under nonreducing conditions. Total disulfide repair by thioredoxin reductase was assessed using a sulfhydryl-specific labeling reagent, 5-iodoacetamido-fluorescein. Treatment of tubulin with 1.0 mM peroxynitrite anion decreased 5-iodoacetamido-fluorescein labeling by 48%; repair of peroxynitrite-damaged tubulin with thioredoxin reductase restored sulfhydryl labeling to control levels. Tubulin disulfide reduction by thioredoxin reductase restored tubulin polymerization activity that was lost after peroxynitrite was added. The extent of activity restored by thioredoxin reductase and by the nonspecific disulfide-reducing agent tris(2-carboxyethyl)phosphine hydrochloride was identical; however, activity was not restored to control levels. Tyrosine nitration of tubulin was detected at all concentrations of peroxynitrite tested; thus, tubulin nitration may be responsible for the fraction of activity that could not be restored. Thiol-disulfide exchange between tubulin and thioredoxin was detected by Western blot, thereby providing further support for our observations that optimal repair of tubulin disulfides required thioredoxin.  相似文献   

16.
We have identified and characterized a thermostable thioredoxin system in the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. The gene (Accession no. APE0641) of A. pernix encoding a 37 kDa protein contains a redox active site motif (CPHC) but its N-terminal extension region (about 200 residues) shows no homology within the genome database. A second gene (Accession no. APE1061) has high homology to thioredoxin reductase and encodes a 37 kDa protein with the active site motif (CSVC), and binding sites for FAD and NADPH. We cloned the two genes and expressed both proteins in E. coli. It was observed that the recombinant proteins could act as an NADPH-dependent protein disulfide reductase system in the insulin reduction. In addition, the APE0641 protein and thioredoxin reductase from E. coli could also catalyze the disulfide reduction. These indicated that APE1061 and APE0641 express thioredoxin (ApTrx) and thioredoxin reductase (ApTR) of A. pernix, respectively. ApTR is expressed as an active homodimeric flavoprotein in the E. coli system. The optimum temperature was above 90 degrees C, and the half-life of heat inactivation was about 4 min at 110 degrees C. The heat stability of ApTR was enhanced in the presence of excess FAD. ApTR could reduce both thioredoxins from A. pernix and E. coli and showed a similar molar specific activity for both proteins. The standard state redox potential of ApTrx was about -262 mV, which was slightly higher than that of Trx from E. coli (-270 mV). These results indicate that a lower redox potential of thioredoxin is not necessary for keeping catalytic disulfide bonds reduced and thereby coping with oxidative stress in an aerobic hyperthermophilic archaea. Furthermore, the thioredoxin system of aerobic hyperthermophilic archaea is biochemically close to that of the bacteria.  相似文献   

17.
Current dogma dictates that bacterial proteins with misoxidized disulfide bonds are shuffled into correctly oxidized states by DsbC. There are two proposed mechanisms for DsbC activity. The first involves a DsbC-only model of substrate disulfide rearrangement. The second invokes cycles of reduction and oxidation of substrate disulfide bonds by DsbC and DsbA respectively. Here, we addressed whether the second mechanism is important in vivo by identifying whether a periplasmic reductase could complement DsbC. We screened for naturally occurring periplasmic reductases in Bacteroides fragilis , a bacterium chosen because we predicted it encodes reductases and has a reducing periplasm. We found that the B. fragilis periplasmic protein TrxP has a thioredoxin fold with an extended N-terminal region; that it is a very active reductase but a poor isomerase; and that it fully complements dsbC . These results provide direct in vivo evidence that correctly folded protein is achievable via cycles of oxidation and reduction.  相似文献   

18.
New targets of Arabidopsis thioredoxins revealed by proteomic analysis   总被引:1,自引:0,他引:1  
Proteomics was used to search for putative thioredoxin (TRX) targets in leaves of the model plant, Arabidopsis thaliana. About forty different proteins have been found to be reduced by TRX, after TRX itself has been specifically reduced by its NADPH-dependent reductase. Twenty-one of the identified proteins were already known or recently proposed to be TRX-dependent and nineteen of the proteins were new potential targets. The identified proteins are involved in a wide variety of processes, including the Calvin cycle, metabolism, photosynthesis, folding, defense against oxidative stress and amino acid synthesis. Two proteins from the glycine cleavage complex were also identified as putative TRX targets, and a new role can be postulated in leaves for TRX in defense against herbivores and/or pathogens.  相似文献   

19.
Scytovirin (SVN) is a novel anti-human immunodeficiency virus (HIV) protein isolated from aqueous extracts of the cultured cyanobacterium Scytonema varium. The protein consists of a single 95-amino acid chain with significant internal sequence duplication and 10 cysteines forming five intrachain disulfide bonds. A synthetic gene that encodes scytovirin was constructed, and expressed in Escherichia coli, with thioredoxin (TRX) fused to its N-terminus (TRX-SVN). Most of the expressed protein was in soluble form, which was purified by a polyhistidine tag affinity purification step. SVN was then cleaved from TRX with enterokinase and separated from the TRX partner by C18 reversed-phase HPLC. This production method has proven superior to earlier synthetic attempts and recombinant procedures using a standard expression system. The current system resulted in yields of 5–10 mg/L of purified SVN for structural studies and for preclinical development of SVN as a topical microbicide for HIV prophylaxis.  相似文献   

20.
The thioredoxin (TRX) superfamily includes redox proteins such as thioredoxins, glutaredoxins (GRXs) and protein disulfide isomerases (PDI). These proteins share a common structural motif named the thioredoxin fold. They are involved in disulfide oxido-reduction and/or isomerization. The sequencing of the Arabidopsisgenome revealed an unsuspected multiplicity of TRX and GRX genes compared to other organisms. The availability of full Chlamydomonasgenome sequence offers the opportunity to determine whether this multiplicity is specific to higher plant species or common to all photosynthetic eukaryotes. We have previously shown that the multiplicity is more limited in Chlamydomonas for TRX and GRX families. We extend here our analysis to the PDI family. This paper presents a comparative analysis of the TRX, GRX and PDI families present in Arabidopsis,Chlamydomonas and Synechocystis. The putative subcellular localization of each protein and its relative expression level, based on EST data, have been investigated. This analysis provides a large overview of the redox regulatory systems present in Chlamydomonas. The data are discussed in view of recent results suggesting a complex cross-talk between the TRX, GRX and PDI redox regulatory networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号