首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the roles of catalase (CAT) in abscisic acid (ABA)-induced stomatal closure using a cat2 mutant and an inhibitor of CAT, 3-aminotriazole (AT). Constitutive reactive oxygen species (ROS) accumulation due to the CAT2 mutation and AT treatment did not affect stomatal aperture in the absence of ABA, whereas ABA-induced stomatal closure, ROS production, and [Ca2+]cyt oscillation were enhanced.  相似文献   

2.
Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), are among the important second messengers in abscisic acid (ABA) signaling in guard cells. In this study, to investigate specific roles of H2O2 in ABA signaling in guard cells, we examined the effects of mutations in the guard cell-expressed catalase (CAT) genes, CAT1 and CAT3, and of the CAT inhibitor 3-aminotriazole (AT) on stomatal movement. The cat3 and cat1 cat3 mutations significantly reduced CAT activities, leading to higher basal level of H2O2 in guard cells, when assessed by 2′,7′-dichlorodihydrofluorescein, whereas they did not affect stomatal aperture size under non-stressed condition. In addition, AT-treatment at concentrations that abolish CAT activities, showed trivial affect on stomatal aperture size, while basal H2O2 level increased extensively. In contrast, cat mutations and AT-treatment potentiated ABA-induced stomatal closure. Inducible ROS production triggered by ABA was observed in these mutants and wild type as well as in AT-treated guard cells. These results suggest that ABA-inducible cytosolic H2O2 elevation functions in ABA-induced stomatal closure, while constitutive increase of H2O2 do not cause stomatal closure.  相似文献   

3.
Although nitric oxide (NO) and reactive oxygen species (ROS) are essential signalling molecules required for mediation of abscisic acid (ABA)-induced stomatal closure, it is not known whether these molecules also mediate the ABA inhibition of stomatal opening. In this study, we investigated the role of NO and ROS in the ABA inhibition of stomatal opening in Vicia faba. ABA induced both NO and ROS synthesis, and the NO scavenger reduced the ABA inhibition of stomatal opening. Exogenous NO and hydrogen peroxide (H2O2) also inhibited stomatal opening, indicating that NO and ROS are involved in the inhibition signalling process. An inhibitor of nitric oxide synthase (NOS) reversed the ABA inhibition of stomatal opening. Either the NO scavenger or the NOS inhibitor also reversed the process in the H2O2 inhibition of stomatal opening. We found that in the ABA inhibition of stomatal opening, NO is downstream of ROS in the signalling process, and NO is synthesized by a NOS-like enzyme.  相似文献   

4.
The methods of confocal laser scanning microscopy (CLSM) and microinjection were used to study ABA-induced H2O2 in guard cells (Vicia faba), which were labeled with H2O2 specific probe-2, 7-dichlorofluorescin diacetate(H2DCFDA). The results indicated 100 U/mL catalase (CAT) could inhibit partly stomatal closure induced by ABA. 10(-3) mmol/L ABA could significantly induce H2O2 production in chloroplast in guard cells of Vicia faba following microinjection, and 100 U/mL CAT could partly abolish the effects following simultaneous microinjection of ABA and CAT. These suggest that H2O2 is possibly involved in ABA signaling leading to stomatal closure.  相似文献   

5.
Isothiocyanates (ITCs) are degradation products of glucosinolates in crucifer plants and have repellent effect on insects, pathogens and herbivores. In this study, we report that exogenously applied allyl isothiocyanate (AITC) induced stomatal closure in Arabidopsis via production of reactive oxygen species (ROS) and nitric oxide (NO), and elevation of cytosolic Ca(2+) . AITC-induced stomatal closures were partially inhibited by an inhibitor of NADPH oxidase and completely inhibited by glutathione monoethyl ester (GSHmee). AITC-induced stomatal closure and ROS production were examined in abscisic acid (ABA) deficient mutant aba2-2 and methyl jasmonate (MeJA)-deficient mutant aos to elucidate involvement of endogenous ABA and MeJA. Genetic evidences have demonstrated that AITC-induced stomatal closure required MeJA priming but not ABA priming. These results raise the possibility that crucifer plants produce ITCs to induce stomatal closure, leading to suppression of water loss and invasion of fungi through stomata.  相似文献   

6.
7.
During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed.  相似文献   

8.
NO可能作为H2O2的下游信号介导ABA诱导的蚕豆气孔关闭   总被引:24,自引:1,他引:23  
ABA、H2O2和硝普钠(SNP)均能诱导蚕豆气孔关闭.NO的清除剂c-PTIO可以减轻由ABA或H2O2所诱导的蚕豆气孔关闭的程度,而过氧化氢酶(CAT)则不能减轻NO诱导的气孔关闭程度.激光共聚焦显微检测结果显示,10μmo1/L的ABA处理后,胞内H2O2的产生速率明显高于NO的产生速率;CAT几乎可完全抑制ABA所诱导的DAF的荧光增加;外源H2O2能显著诱导胞内DAF的荧光增加;c-PTIO对ABA诱导的DCF荧光略有促进作用,但外源SNP不能诱导胞内DCF荧光增加.这些结果表明,在ABA诱导气孔关闭过程中,H2O2可能在NO的上游起作用并受NO的负反馈调节.  相似文献   

9.
Reactive oxygen species (ROS) are widely recognized as important regulators of stomatal aperture and plant gas exchange. The pathways through which stomata perceive ROS share many common linkages with the well characterized signalling pathway for the hormone abscisic acid (ABA), a major driver of stomatal closure. Given reports that ABA receptor mutants have no stomatal response to ozone‐triggered ROS production, as well as evidence that all steps in the ABA biosynthetic pathway can be non‐enzymatically converted by ROS, here we investigated the possibility that ozone closes stomata by directly converting ABA precursors to ABA. In plants where stomata were responsive to ozone, we found that foliar ABA levels rapidly increased upon exposure to ozone. Recovery of gas exchange post‐exposure occurred only when ABA levels declined. Our data suggest that stomatal closure in response to ozone exposure occurs as a result of direct oxidation of ABA precursors leading to ABA production, but the importance of this ROS interaction remains uncertain under normal photosynthetic conditions.  相似文献   

10.
Zhang X  Zhang L  Dong F  Gao J  Galbraith DW  Song CP 《Plant physiology》2001,126(4):1438-1448
One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H(2)O(2)), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that H(2)O(2) may function as an intermediate in ABA signaling in Vicia faba guard cells. H(2)O(2) inhibited induced closure of stomata, and this effect was reversed by ascorbic acid at concentrations lower than 10(-5) M. Further, ABA-induced stomatal closure also was abolished partly by addition of exogenous catalase (CAT) and diphenylene iodonium (DPI), which are an H(2)O(2) scavenger and an NADPH oxidase inhibitor, respectively. Time course experiments of single-cell assays based on the fluorescent probe dichlorofluorescein showed that the generation of H(2)O(2) was dependent on ABA concentration and an increase in the fluorescence intensity of the chloroplast occurred significantly earlier than within the other regions of guard cells. The ABA-induced change in fluorescence intensity in guard cells was abolished by the application of CAT and DPI. In addition, ABA microinjected into guard cells markedly induced H(2)O(2) production, which preceded stomatal closure. These effects were abolished by CAT or DPI micro-injection. Our results suggest that guard cells treated with ABA may close the stomata via a pathway with H(2)O(2) production involved, and H(2)O(2) may be an intermediate in ABA signaling.  相似文献   

11.
Methyl jasmonate (MeJA) as well as abscisic acid (ABA) induces stomatal closure with their signal crosstalk. We investigated the function of a regulatory A subunit of protein phosphatase 2A, RCN1, in MeJA signaling. Both MeJA and ABA failed to induce stomatal closure in Arabidopsis rcn1 knockout mutants unlike in wild-type plants. Neither MeJA nor ABA induced reactive oxygen species (ROS) production and suppressed inward-rectifying potassium channel activities in rcn1 mutants but not in wild-type plants. These results suggest that RCN1 functions upstream of ROS production and downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.  相似文献   

12.
逆境下,植物细胞内ABA含量急剧增加,同时植物也可通过一些酶代谢反应积累活性氧,如H_2O_2,O_2~-。ABA作为逆境信号对气孔运动的显著调节作用已被诸多实验所证实,但关于其对气孔运动调节的细节还知之甚少。H_2O_2作为氧化信号分子在植物抗病信号转导中已得到广泛研究,但H_2O_2是否介导保卫细胞的气孔运动还缺乏直接的证据。我们已初步发现H_2O_2可参与外源ABA诱  相似文献   

13.
We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.  相似文献   

14.
Pyrabactin, a synthetic agonist of abscisic acid (ABA), inhibits seed germination and hypocotyl growth and stimulates gene expression in a very similar way to ABA, implying the possible modulation of stomatal function by pyrabactin as well. The effect of pyrabactin on stomatal closure and secondary messengers was therefore studied in guard cells of Pisum sativum abaxial epidermis. Pyrabactin caused marked stomatal closure in a pattern similar to ABA. In addition, pyrabactin elevated the levels of reactive oxygen species (ROS), nitric oxide (NO), and cytoplasmic pH levels in guard cells, as indicated by the respective fluorophores. However, apyrabactin, an inactive analogue of ABA, did not affect either stomatal closure or the signalling components of guard cells. The effects of pyrabactin-induced changes were reversed by pharmalogical compounds that modulate ROS, NO or cytoplasmic pH levels, quite similar to ABA effects. Fusicoccin, a fungal toxin, could reverse the stomatal closure caused by pyrabactin, as well as that caused by ABA. Experiments on stomatal closure by varying concentrations of ABA, in the presence of fixed concentration of pyrabactin, and vice versa, revealed that the actions of ABA and pyrabactin were additive. Further kinetic analysis of data revealed that the apparent K(D) of ABA was increased almost 4-fold in the presence of ABA, suggesting that pyrabactin and ABA were competing with each other either at the same site or close to the active site. It is proposed that pyrabactin could be used to examine the ABA-related signal-transduction components in stomatal guard cells as well as in other plant tissues. It is also suggested that pyrabactin can be used as an antitranspirant or as a priming agent for improving the drought tolerance of crop plants.  相似文献   

15.
Signaling events during abscisic acid (ABA) or methyl jasmonate (MJ)-induced stomatal closure were examined in Arabidopsis wild type, ABA-insensitive (ost1-2), and MJ-insensitive mutants (jar1-1) in order to examine a crosstalk between ABA and MJ signal transduction. Some of the experiments were performed on epidermal strips of Pisum sativum. Stomata of jar1-1 mutant plants are insensitive to MJ but are able to close in response to ABA. However, their sensitivity to ABA is less than that of wild-type plants. Reciprocally, the stomata of ost1-2 are insensitive to ABA but are able to close in response to MJ to a lesser extent compared to wild-type plants. Both MJ and ABA promote H(2)O(2) production in wild-type guard cells, while exogenous application of diphenylene iodonium (DPI) chloride, an inhibitor of NAD(P)H oxidases, results in the suppression of ABA- and MJ-induced stomatal closure. ABA elevates H(2)O(2) production in wild-type and jar1-1 guard cells but not in ost1-2, whereas MJ induces H(2)O(2) production in both wild-type and ost1-2 guard cells, but not in jar1-1. MJ-induced stomatal closing is suppressed in the NAD(P)H oxidase double mutant atrbohD/F and in the outward potassium channel mutant gork1. Furthermore, MJ induces alkalization in guard cell cytosol, and MJ-induced stomatal closing is inhibited by butyrate. Analyses of the kinetics of cytosolic pH changes and reactive oxygen species (ROS) production show that the alkalization of cytoplasm precedes ROS production during the stomatal response to both ABA and MJ. Our results further indicate that JAR1, as OST1, functions upstream of ROS produced by NAD(P)H oxidases and that the cytoplasmic alkalization precedes ROS production during MJ or ABA signal transduction in guard cells.  相似文献   

16.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

17.
Stomata are unique that they sense and respond to several internal and external stimuli, by modulating signaling components in guard cells. The levels of reactive oxygen species (ROS), nitric oxide (NO) and cytosolic calcium (Ca2+) increase significantly during stomatal closure by not only plant hormones [such as abscisic acid (ABA) or methyl jasmonate (MJ)] but also elicitors (such as chitosan). We observed that cytosolic alkalinization preceded the production of ROS as well as NO during ABA induced stomatal closure. We therefore propose that besides ROS and NO, the cytosolic pH is an important secondary messenger during stomatal closure by ABA or MJ. We also noticed that there is either a cross talk or feedback regulation by cytosolic Ca2+ and ROS (mostly H2O2). Further experiments on the interactions between cytosolic pH, ROS, NO and Ca2+ would yield interesting results.Key words: abscisic acid, methyl jasmonate, chitosan, cytosolic pH, reactive oxygen species, H2O2, nitric oxide, cytosolic calcium  相似文献   

18.
Salicylic acid (SA), a ubiquitous phenolic phytohormone, is involved in many plant physiological processes including stomatal movement. We analysed SA‐induced stomatal closure, production of reactive oxygen species (ROS) and nitric oxide (NO), cytosolic calcium ion ([Ca2+]cyt) oscillations and inward‐rectifying potassium (K+in) channel activity in Arabidopsis. SA‐induced stomatal closure was inhibited by pre‐treatment with catalase (CAT) and superoxide dismutase (SOD), suggesting the involvement of extracellular ROS. A peroxidase inhibitor, SHAM (salicylhydroxamic acid) completely abolished SA‐induced stomatal closure whereas neither an inhibitor of NADPH oxidase (DPI) nor atrbohD atrbohF mutation impairs SA‐induced stomatal closures. 3,3′‐Diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) stainings demonstrated that SA induced H2O2 and O2 production. Guard cell ROS accumulation was significantly increased by SA, but that ROS was suppressed by exogenous CAT, SOD and SHAM. NO scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO) suppressed the SA‐induced stomatal closure but did not suppress guard cell ROS accumulation whereas SHAM suppressed SA‐induced NO production. SA failed to induce [Ca2+]cyt oscillations in guard cells whereas K+in channel activity was suppressed by SA. These results indicate that SA induces stomatal closure accompanied with extracellular ROS production mediated by SHAM‐sensitive peroxidase, intracellular ROS accumulation and K+in channel inactivation.  相似文献   

19.
We investigated the role of glutathione (GSH) in stomatal movements using a GSH deficient mutant, chlorinal-1 (ch1-1). Guard cells of ch1-1 mutants accumulated less GSH than wild types did. Light induced stomatal opening in ch1-1 and wild-type plants. Abscisic acid (ABA) induced stomatal closure in ch1-1 mutants more than wild types without enhanced reactive oxygen species (ROS) production. Therefore, GSH functioned downstream of ROS production in the ABA signaling cascade.  相似文献   

20.
We found that glutathione (GSH) is involved in abscisic acid (ABA)-induced stomatal closure. Regulation of ABA signaling by GSH in guard cells was investigated using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase, and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). Glutathione contents in guard cells decreased along with ABA-induced stomatal closure. Decreasing GSH by both the cad2-1 mutation and CDNB treatment enhanced ABA-induced stomatal closure. Glutathione monoethyl ester (GSHmee) restored the GSH level in cad2-1 guard cells and complemented the stomatal phenotype of the mutant. Depletion of GSH did not significantly increase ABA-induced production of reactive oxygen species in guard cells and GSH did not affect either activation of plasma membrane Ca2+-permeable channel currents by ABA or oscillation of the cytosolic free Ca2+ concentration induced by ABA. These results indicate that GSH negatively modulates a signal component other than ROS production and Ca2+ oscillation in ABA signal pathway of Arabidopsis guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号