首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol for the extraction of DNA from ancient skeletal material was developed. Bone specimen samples (powder or slice), buffer, pretreatment, and extraction methodologies were compared to investigate the best conditions yielding the highest concentration of DNA. The degree of extract contamination by polymerase chain reaction (PCR) inhibitors was compared as well. Pretreatment was carried out using agitation in an incubator shaker and microwave digestion. Subsequently, DNA from bones was isolated by the classical organic phenol–chloroform extraction and silica-based spin columns. Decalcification buffer for total demineralization was required as well as lysis buffer for cell lysis to obtain DNA, whereas microwave-assisted digestion proved to be very rapid, with an incubation time of 2 min instead of 24 h at an incubator shaker without using lysis buffer. The correction of isolated DNA was detected using real-time PCR with melt curve analysis, which was 82.8 ± 0.2 °C for highly repetitive α-satellite gene region specific for human chromosome 17 (locus D17Z1). Consequently, microwave-based DNA digestion followed by silica column yielded a high-purity DNA with a concentration of 19.40 ng/μl and proved to be a superior alternative to the phenol–chloroform method, presenting an environmentally friendly and efficient technique for DNA extraction.  相似文献   

2.
Difficulty in disrupting cysts of Giardia intestinalis, a cosmopolitan protozoan parasite, decreases the yield of DNA extracted and reduces the effectiveness of the polymerase chain reaction (PCR). To improve the detection of the Giardia Glutamate Dehydrogenase (gdh) gene, we re-evaluated the effects of deoxyribonucleic acid (DNA) extraction methods. Purified and concentrated cysts from 33 fecal samples were disrupted using conventional methods, and DNA extraction was conducted using two protocols: the QIAamp Stool Mini Kit and phenol/chloroform/isoamyl alcohol (PCI). PCR amplification was successful for 12 extracted DNA samples (36%) using PCI following a glass bead and freeze/thaw pretreatment and for all 33 samples (100%) using the QIAamp Stool Mini Kit following the aforementioned pretreatment. Consequently, the pretreatment of cysts with glass beads and freeze/thaw cycles followed by extraction of DNA with the QIAamp Stool Mini kit was the more effective protocol.  相似文献   

3.
A simple, efficient and reliable CTAB method is standardized for genomic DNA isolation from fresh young leaves of a traditional medicinal plant Meyna spinosa. Key steps in the modified procedure include additional chloroform: isoamyl alcohol (24:1, v/v) extraction, addition of 4% PVP in the extraction buffer and an overnight isopropanol precipitation at room temperature. This procedure yields a high amount (46 μg DNA g?1 fresh leaf tissue) of good quality DNA free from contaminants. The isolated DNA is suitable for digestion with EcoRI and HindIII restriction enzymes and can be used in other DNA manipulation techniques.  相似文献   

4.
The extraction of DNA from manure and the subsequent polymerase chain reaction (PCR) amplification of virulence genes to detect pathogens require an effective method of purification. Four different methods were assessed for their effectiveness in extracting and purifying Escherichia coli O157:H7 DNA from cattle manure: phenol/chloroform purification, phenol/chloroform/Sepharose B4 spin columns, phenol/chloroform/polyvinylpolypyrrolidone (PVPP) spun columns, and Mo Bio UltraClean kit. A PCR assay targeting the shiga-like toxin I gene (sltI) was carried out to determine the effectiveness of the four methods in removing PCR inhibitors from the manure samples. All methods were used to extract a manure slurry and the cleanliness of the samples was tested by the PCR with varying concentrations of spiked E. coli O157:H7 target DNA. The PVPP spun columns and the UltraClean kit had the best detection limit, detecting 20 pg of E. coli DNA (about 2x10(3) cells) per 100 mg of manure. The UltraClean kit and the PVPP spun columns also had the best and similar detection limits of 3x10(4) CFU/100 mg manure when E. coli O157:H7 cells were spiked into the manure sample and purified by all four methods. The enrichment of cells after inoculation into manure was performed using tryptic soy broth at 37 degrees C for 5 h. Both the PVPP spun columns and the UltraClean kit methods were used to purify the enriched samples and were able to detect initial inocula of 6 CFU/100 mg manure, indicating that the two methods were highly efficient in purifying DNA from manure samples.  相似文献   

5.
The technique described here is a fast and simple method of extracting chloroplast DNA (cpDNA). It overcomes the need for differential centrifugation using density gradients. The leaves do not have to be kept in the dark and lyophilized before extraction, but lyophilization is still possible. The chloroplasts are specifically lysed in a cell extract of leaves, using a non-ionic detergent. After isolation by centrifugation, the cpDNA is purified by the combined action of proteolytic enzymes and detergents, followed by the elimination of proteins using a mixture of chloroform and isoamyl alcohol. This method provided good quality restriction profiles for all species analyzed.  相似文献   

6.
A simple method for extraction of fungal genomic DNA   总被引:8,自引:0,他引:8  
We have developed a new, simple and effective method for extraction of fungal genomic DNA. The initial steps involved suspension of freeze-dried mycelium in buffer containing sodium dodecyl sulphate, detachment of DNA from polysaccharides by mild shearing, NaCl precipitation of polysaccharides and protein, chloroform extraction and ethanol precipitation. The ethanol precipitate was then subjected to a second round of mild shearing, NaCl precipitation, chloroform extraction and ethanol precipitation. The procedure required approximately 1 h to perform. The method yielded 8-32 microg of high molecular weight DNA per 30 mg of freeze-dried mycelium when tested on six fungal species: Aspergillus niger, A. flavus, Fusarium graminarum, Neotyphodium lolii, Penicillium citrinum and Rhizopus nigricanes. The DNA was digestible with EcoRI, HindIII, SalI and BamHI. For the slow-growing N. lolii, a modification of the method was developed that removed the agar residue from colonies grown on agar plates by centrifugation at 13 000 rev min(-1) in the presence of CsCl. The modified method yielded 1.5-2 microg of high molecular weight DNA per colony.  相似文献   

7.
Comparison and optimization of ancient DNA extraction   总被引:8,自引:0,他引:8  
Ancient DNA analyses rely on the extraction of the tiny amounts of DNA remaining in samples that are hundreds to tens of thousands of years old. Despite the critical role extraction efficiency plays in this field of research, no study has comprehensively compared ancient DNA extraction techniques to date. There are a wide range of methods currently in use, which rely on such disparate principles as spin columns, alcohol precipitation, or binding to silica. We have compared a number of these methods using quantitative PCR and then optimized each step of the most promising method. We found that most chemicals routinely added to ancient DNA extraction buffers do not increase, and sometimes even decrease, DNA yields. Consequently, our optimized method uses a buffer consisting solely of EDTA and proteinase K for bone digestion and binding DNA to silica via guanidinium thiocyanate for DNA purification. In a comparison with published methods, this minimalist approach, on average, outperforms all other methods in terms of DNA yields as measured using quantitative PCR. We also found that the addition of bovine serum albumin (BSA) to the PCR helps to overcome inhibitors in ancient DNA extracts. Finally, we observed a marked difference in the performance between different types of DNA polymerases, as measured by amplification success.  相似文献   

8.
The quality and yield of extracted DNA are critical for the majority of downstream applications in molecular biology. Moreover, molecular techniques such as quantitative real-time PCR (qPCR) are becoming increasingly widespread; thus, validation and cross-laboratory comparison of data require standardization of upstream experimental procedures. DNA extraction methods depend on the type and size of starting material(s) used. As such, the extraction of template DNA is arguably the most significant variable when cross-comparing data from different laboratories. Here, we describe a reliable, inexpensive and rapid method of DNA purification that is equally applicable to small or large scale or high-throughput purification of DNA. The protocol relies on a CTAB-based buffer for cell lysis and further purification of DNA with phenol : chloroform : isoamyl alcohol. The protocol has been used successfully for DNA purification from rumen fluid and plant cells. Moreover, after slight alterations, the same protocol was used for large-scale extraction of DNA from pure cultures of Gram-positive and Gram-negative bacteria. The yield of the DNA obtained with this method exceeded that from the same samples using commercial kits, and the quality was confirmed by successful qPCR applications.  相似文献   

9.
We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.  相似文献   

10.
Current research targeting filtered macrobial environmental DNA (eDNA) often relies upon cold ambient temperatures at various stages, including the transport of water samples from the field to the laboratory and the storage of water and/or filtered samples in the laboratory. This poses practical limitations for field collections in locations where refrigeration and frozen storage is difficult or where samples must be transported long distances for further processing and screening. This study demonstrates the successful preservation of eDNA at room temperature (20 °C) in two lysis buffers, CTAB and Longmire's, over a 2‐week period of time. Moreover, the preserved eDNA samples were seamlessly integrated into a phenol–chloroform–isoamyl alcohol (PCI) DNA extraction protocol. The successful application of the eDNA extraction to multiple filter membrane types suggests the methods evaluated here may be broadly applied in future eDNA research. Our results also suggest that for many kinds of studies recently reported on macrobial eDNA, detection probabilities could have been increased, and at a lower cost, by utilizing the Longmire's preservation buffer with a PCI DNA extraction.  相似文献   

11.
Coconut cadong-cadong viroid (CCCVd) causes the Lethal cadang-cadang disease of coconut palms in the Philippines and it is recently reported to be associated with the orange spotting disease on oil palm in Malaysia. The low concentration of the viroid RNA in oil palm as well as the high content of polyphenols and polysaccharides in this plant which interfere with the purification steps makes it difficult to extract and detect this viroid from oil palm. A previously described method was modified and optimized for extraction and detection of CCCVd from infected oil palms. Briefly, 7 g of leaf material was homogenized in a mortar or a blender using liquid nitrogen. 10 ml of extraction buffer (100 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM EDTA) along with 100 mM 2-mercaptoethanol and 10 ml water saturated phenol was added to the frozen powder. After centrifuging at 4 degrees C, 4000 g for 30 min, the aqueous phase was extracted once more with phenol then once with chloroform-isoamyl alcohol (24:1). After adding sodium acetate, pH 5.6 to 200 mM, the mixture was precipitated with 2.5 vol ethanol overnight in -20 freezer and then the pellet was washed with 70% ethanol and air-dried. One milliliter of 8 M LiCl was added to the dried pellet and after shaking overnight at 4 degrees C and another centrifugation step the supernatant was collected and precipitated again with ethanol and then the resulting pellet was washed and air-dried. To carry out northern blotting, samples equivalent to 40 g of plant tissue were mixed with formamide buffer and loaded onto a 12% polyacrylamide gel containing 7 M urea and after separation by electrophoresis, were electroblotted onto membrane and fixed by UV cross-linking. Pre-hybridization and hybridization using hybridization buffer (50% formamide, 25%SSPE, 0.1% Ficol and PVP, 0.1 % SDS, 0.02 % DNA (5mg/ml)) was carried out at 45 degrees C for 90 min and 16 h, respectively followed by two low stringency washes (0.5 X SSC, 0.1% SDS, at room temperature for 5 min) and one high stringency wash (0.1X SSC, 0.1% SDS at 60 degrees C for 1 hour). In vitro synthesized DIG-labeled full-length CCCVd(-) RNA probe was used in hybridization step. DIG Nucleic Acid Detection Kit (Roche) instructions were followed for detection procedure and as a result the blue bands corresponding to the position of the viroid were appeared on the membrane. The result of this study showed the ability of DIG labeled probe in detection of the viroid and also provided a suitable extraction and hybridization method for the detection of CCCVd from oil palm.  相似文献   

12.
The barcoding of life initiative provides a universal molecular tool to distinguish animal species based on the amplification and sequencing of a fragment of the subunit 1 of the cytochrome oxidase (COI) gene. Obtaining good quality DNA for barcoding purposes is a limiting factor, especially in studies conducted on small‐sized samples or those requiring the maintenance of the organism as a voucher. In this study, we compared the number of positive amplifications and the quality of the sequences obtained using DNA extraction methods that also differ in their economic costs and time requirements and we applied them for the genetic characterization of louse flies. Four DNA extraction methods were studied: chloroform/isoamyl alcohol, HotShot procedure, Qiagen DNeasy® Tissue and Blood Kit and DNA Kit Maxwell® 16LEV. All the louse flies were morphologically identified as Ornithophila gestroi and a single COI‐based haplotype was identified. The number of positive amplifications did not differ significantly among DNA extraction procedures. However, the quality of the sequences was significantly lower for the case of the chloroform/isoamyl alcohol procedure with respect to the rest of methods tested here. These results may be useful for the genetic characterization of louse flies, leaving most of the remaining insect as a voucher.  相似文献   

13.
High-throughput DNA extraction method suitable for PCR   总被引:22,自引:0,他引:22  
Xin Z  Velten JP  Oliver MJ  Burke JJ 《BioTechniques》2003,34(4):820-4, 826
PCR has become one of the most popular techniques in functional genomics. Projects in both forward and reverse genetics routinely require PCR amplification of thousands of samples. Processing samples to extract DNA of sufficient purity for PCR is often a limiting step. We have developed a simple 96-well plate-based high-throughput DNA extraction method that is applicable to many plant species. The method involves a simple incubation of plant tissue samples in a DNA extraction buffer followed by a neutralization step. With the addition of a modified PCR buffer, the extracted DNA enabled the robust amplification of genomic fragments from samples of Arabidopsis, tobacco, sorghum, cotton, moss, and even pine needles. Several thousand DNA samples can be economically processed in a single day by one person without the use of robotics. This procedure will facilitate many technologies including high-throughput genotyping, map-based cloning, and identification of T-DNA or transposon-tagged mutants for known gene sequences.  相似文献   

14.
目的比较两种肠内容物前处理和两种提取方法对清洁级SD大鼠肠内容物细菌基因组DNA提取效率。方法分别选用PBS多次离心漂洗、液氮破细胞两种前处理方法和酚/氯仿抽提、试剂盒过柱法两种提取方法进行组合分析,对4份肠内容物和16份含金黄色葡萄球菌肠内容物进行随机提取。结果大鼠肠内容物细菌基因组DNA含量和纯度测定结果显示,与PBS反复离心相比,液氮研磨前处理能显著提高大鼠肠内容物基因组DNA。荧光定量PCR表明,液氮研磨前处理较PBS反复离心能更好地收集细菌基因组DNA,其Ct值最低。结论研究结果表明,采用液氮研磨试剂盒法在大鼠肠内容物DNA提取中是较为优良的方法,该方法为建立实验动物中微生物的定量PCR检测方法打下了基础。  相似文献   

15.
In order to develop and establish a method for isolation of PCR-amplifiable DNA from aged refuse, the orthogonal experiment was conducted to evaluate systematically the effects of various steps within each method in terms of DNA yield, purity, fragment size, humus contamination, PCR amplifiability using universal eubacterial and archaeal 16S rDNA prime pairs, and genetic diversity estimate from denaturing gradient gel electrophoresis. The inclusion of the pretreatment step was demonstrated to be crucial for the recovery of high-quality DNA preparations from the aged refuse and the pre-washing with TENP-PBS buffer was recommended. Satisfactory DNA yields and unbiased DNA extraction required the introduction of lysis by bead-beating treatment. The modified Sephadex G-200 spin column was effective in obtaining relatively stable DNA preparations from the aged refuse. It was established that a combination of pre-washes with TENP-PBS buffer plus gentle bead lysis and proteinase K treatment followed by SDS-based extraction and subsequent modified Sephadex G-200 spin column purification could ensure the acquisition of PCR-amplifiable DNA from the aged refuse expediently and cheaply.  相似文献   

16.
We investigated whether a combination of recently introduced methods, total demineralization and ion‐exchange columns, would increase DNA recovery from old bone. Ten bone samples taken after a burial period of ∼60 years were used in this study. Bone powder was digested using total or incomplete demineralization. DNA was extracted by the standard organic method. The DNA extract was purified with ion‐exchange columns or QIAquick® spin columns. The efficiency of different DNA extraction methods was compared in terms of DNA concentration, inhibitors generated by real‐time PCR, and conventional STR typing results. The mean DNA concentration using the total demineralization method is ∼3 times higher than that using the incomplete demineralization method. For DNA purification, the method using QIAquick® spin columns appeared to yield approximately double the DNA than the method using ion‐exchange columns. Furthermore, 2 out of 10 samples showed higher levels of inhibition with CT values of IPC ≥30 cycles when using only ion‐exchange columns. In STR results, total demineralization yielded more locus profiles by 4.2 loci than incomplete demineralization, and QIAquick® spin columns also yielded more locus profiles by 3.5 loci than ion‐exchange columns. Total demineralization of bone powder significantly increased DNA yield and improved STR typing results. However, the use of ion‐exchange columns was not efficient when compared with the method using QIAquick® spin columns. It is suggested that the combination of total demineralization and QIAquick® spin columns lead to greatly improved STR typing results. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The goal of this study was to develop a simple method to improve DNA recovery from challenging bone samples. To this end, an optimized procedure was developed that combined the demineralization and DNA extraction into a single step, followed by DNA purification using an automated silica-coated paramagnetic bead procedure. This method replaced a previous silica-membrane-based procedure, which was able to recover sufficient DNA to obtain full autosomal and Y chromosome STR profiles from greater than 90% of the samples, including samples greater than 20 years old. The development process began with the evaluation of buffer and demineralization systems to determine the best reagent combination. During the developmental process, we observed that the addition of EDTA and DTT affected silica-based DNA purification methods by raising the pH of the digest buffer. The protocols with buffer ATL, PK, EDTA, and DTT followed by lowering the pH with sodium acetate just before purification resulted in the best yields. The method reduced the extraction volume from 10 to 1.5 ml and used commercially available reagents already being utilized in forensic DNA casework. Because of the simplicity and small volume needed for the procedure, many steps where contamination could be introduced have been eliminated or minimized. This study demonstrated a new method of recovering DNA from bone samples capable of extracting trace quantities of DNA, removing potential inhibitors, and minimizing the potential for exogenous DNA contamination.  相似文献   

18.
A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.  相似文献   

19.
Origanum onites is an economically important medicinal plant with high essential oil content. Lack of an appropriate DNA isolation procedure is a limiting factor for any molecular study of this plant. We have used a protocol for genomic DNA isolation based on a hexadecyltrimethylammonium bromide (CTAB) method described for other plant species. The method involves mortar grinding of leaf tissue, modified CTAB extraction using high salt concentrations and polyvinyl pyrrolidone, and successive isoamyl alcohol/chloroform extractions. The yield was approx. 20 microg DNA per 200 mg of initial fresh plant material. The genomic DNA obtained by this method was suitable to be used in restriction digests, inter simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) reactions. This extraction method should facilitate the molecular analysis of Origanum chemotypes.  相似文献   

20.
The genomic DNA isolation from mature leaf midrib is a tough job, because of the abundance of polysaccharides and secondary metabolites, which interferes with DNA isolation as well as polymerase chain reaction (PCR) studies. The leaf midrib of 3rd leaf from 3-moths old, ex-vitro developing banana [AAA, Dwarf Cavendish-Basrai (Sindhri banana)] plants (healthy and BBTV infected) was grinded in liquid N2. Exact 0.3 g of leaf midrib powder was washed with washing buffer (100 mM Tris-Cl, 5 mM EDTA, 0.35 M sorbitol, 1% 2-mercaptoethanol) then homogenized in 0.8 ml of three different pre-heated (60°C) DNA isolation buffers. Supernatant was extracted through phenol: chloroform:isoamyl alcohol (25:24, v/v), chloroform: isoamyl alcohol (24:1, v/v) and finally with chloroform (100%) one by one. Maximum yields were ranged from 49.33 and 27.73 μg mg ?1 DNA with impurities 5.67 and 5.87 μg mg?1 through buffer I, while 45.77 and 25.53 μg mg?1 DNA with 6.13 and 6.16 μg mg?1 impurities through buffer III from healthy and infected plants respectively. Best one RAPD was observed in all the DNA samples isolated with different buffers, while viral amplification was good in DNA isolated with buffer I and II, when 10 (RAPD) and 25 ng DNA (C 1 gene) was used as a template in a reaction of 25 μl. Meanwhile, buffer II is limited for viral DNA isolation while buffer I (1M Tris-Cl, 5M NaCl, 2 % cTAB, 50mM EDTA, 1 % PVP, 0.2 % 2-mercaptoethanol) has dual capacity for plant and virus DNA isolation. This described protocol is economic in terms of times, labor and cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号