首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorophores-modified nanoparticles comprised of poly(γ-glutamic acid)-phenylalanine (γ-PGA-Phe-633) and ovalbumin (OVA-750) termed NPs-633/OVA-750 were prepared to assess their biodistribution using an in vivo fluorescence imager. Dynamic light scattering measurements indicated that NPs-633/OVA-750 were about 200 nm in diameter. The release of encapsulated OVA from NPs-633 in PBS was negligible (~10%) for a week. When subcutaneously injected, the localization period of OVA-750-encapsulated into NPs-633 at the site of injection (SOI) was much longer than that of free OVA-750, but was shorter as compared to a mixture with aluminum hydroxide. The NPs-633 disappeared at the SOI and major organs within 1 month after administration. Moreover, intravenously and intraperitoneally administered NPs-633 were mainly observed at the liver, and there was more rapid clearance from all organs as compared with non-biodegradable NPs. These fast clearance and degradation characteristics of γ-PGA-Phe NPs will be important not only for avoiding undesired adverse effects, but also for inducing a strong vaccine effect.  相似文献   

2.
Shih IL  Van YT  Sau YY 《Biotechnology letters》2003,25(20):1709-1712
Various enantiomeric isomers, metals salts and molecular sizes of poly(-glutamic acid), -PGA, produced by Bacillus licheniformis CCRC 12826, were prepared and their antifreeze activities were studied by differential scanning calorimetry. The antifreeze activity of -PGA increased as its molecular weight decreased but was indifferent to its d/l-glutamate composition. The antifreeze activity was cation dependent decreasing in the order Mg2+>>Ca 2+Na +>>K + which follows that of inorganic chlorides in that high ionic charge leads to high antifreeze activity. The mechanism by which the cryoprotective effects of -PGA can be explained is still yet to be determined.  相似文献   

3.
Magnetite nanoparticles coated with an anionic biopolymer poly(γ-glutamic acid) (PGA-MNPs) were synthesized and characterized for their methylene blue dye adsorption capability. Both bare- and dye-loaded PGA-MNPs were characterized by FTIR, TEM and VSM measurements, revealing the PGA-MNPs to be superparamagnetic with average particle diameter being 12.4 nm and magnetization value 59.2 emu/g. The synthesized PGA-MNPs were stable in deionized, tap and river waters as well as in acidic and basic media. Redlich-Peterson and Langmuir models precisely described the isotherm and the maximum adsorption capacity was 78.67 mg/g. A pseudo-second-order equation best predicted the kinetics with a maximum adsorption attained within 5 min. Incorporation of sodium or calcium ions reduced the dye adsorption, while a raise in pH enhanced adsorption and a complete desorption occurred at pH 1.0. Dye removal mechanism by PGA-MNPs was probably due to electrostatic interaction through exchange of protons from side-chain α-carboxyl groups on PGA-MNPs surface.  相似文献   

4.
Poly(γ-glutamic acid) (γ-PGA) is a promising biomaterial with a wide range of unique applications. To extensively screen γ-PGA-producing bacteria with high yield and different molecular weight, we developed an integrated high-throughput strategy. Firstly, γ-PGA-producing bacteria were selected in a primary screen plate containing a basic dye (neutral red) based on the concentric zone formed through the electrostatic interaction between the dye and the secreted acidic polymer γ-PGA. Then, the isolates were cultured in 50 ml tubes instead of 250 ml flasks. A good correlation of fermentation results in 50 ml tubes and 250 ml flasks was observed. Thirdly, the γ-PGA yield and weight-average molecular weight (M w) were simultaneously determined by spectrophotomic assay (UV assay) and neutral red plate assay. The results showed that the diameter of the concentric zone varied among isolates and was negatively correlated with the weight-average molecular weight of γ-PGA. The accuracy of the methods was comparable to that of high-performance liquid chromatography and gel permeation chromatography assay. Lastly, γ-PGA obtained from the target isolates was rapidly identified using thin layer chromatography assay. With this strategy, 13 bacteria with high yield and various molecular weights of γ-PGA from 500 obvious single colonies on the primary screen plate were obtained.  相似文献   

5.
Chitosan (Ch) is a nontoxic and biocompatible polysaccharide extensively used in biomedical applications. Ch, as a polycation, can be combined with anionic polymers by layer-by-layer (LbL) self-assembly, giving rise to multilayered complexed architectures. These structures can be used in tissue engineering strategies, as drug delivery systems, or artificial matrices mimicking the extracellular microenvironment. In this work, Ch was combined with poly(γ-glutamic acid) (γ-PGA). γ-PGA is a polyanion, which was microbially produced, and is known for its low immunogenic reaction and low cytotoxicity. Multilayered ultrathin films were assembled by LbL, with a maximum of six layers. The interaction between both polymers was analyzed by: ellipsometry, quartz crystal microbalance with dissipation, Fourier transform infrared spectroscopy, atomic force microscopy, and zeta potential measurements. Ch/γ-PGA polyelectrolyte multilayers (PEMs) revealed no cytotoxicity according to ISO 10993-5. Overall, this study demonstrates that Ch can interact electrostatically with γ-PGA forming multilayered films. Furthermore, this study provides a comprehensive characterization of Ch/γ-PGA PEM structures, elucidating the contribution of each layer for the nanostructured films. These model surfaces can be useful substrates to study cell-biomaterial interactions in tissue regeneration.  相似文献   

6.
A novel amphoteric poly(amino acid) is synthesized by grafting a cationic amino acid (L-Arg) to γ-PGA to prepare charged NPs. γ-PGA-Arg NPs can be prepared by the self-complexation of a single polymer by intra-/inter-molecular electrostatic interactions when the polymer is dispersed in water. The size and surface charge of the NPs can be regulated by the grafting degree of Arg (41, 56, and 83%). The smallest NPs are obtained at 56% grafting degree of the γ-PGA-Arg copolymer. The 56 and 83% grafting degree NPs are stable for at least 1 week. Depending on their surface charge, these NPs can selectively adsorb anionically or cationically charged proteins.  相似文献   

7.
The development of stimuli-responsive materials in response to the molecules involved in biological processes has gained increased attentions. In this work, carboxymethyl chitosan (CM-chitosan) and poly(γ-glutamic acid) (pGlu) were reacted with a naturally occurring compound, genipin, leading to the formation of genipin-crosslinked CM-chitosan/pGlu conjugates with fluorescence emissions. The genipin-conjugated polymers were sensitive to the oxidation product of glucose, gluconic acid and hydrogen peroxide (H2O2). Fluorescence emissions of the polymers were quenched by gluconic acid and H2O2. An increase in the hydrodynamic diameter together with the quenching of fluorescence indicated that the genipin-conjugated polymers were self-aggregated into nanoparticles, in response to the stimulus of gluconic acid (but not for H2O2). Bovine serum albumin (BSA) could be loaded in the self-aggregated nanoparticles, and the incorporated BSA slowly released from the nanoparticles under hyper-gluconic acid conditions. This material is hence proposed as a stimuli-responsive material for optical sensing and protein delivery purposes.  相似文献   

8.
Poly-γ-glutamic acid (γ-PGA) is a natural, biodegradable and water-soluble biopolymer of glutamic acid. This review is focused on nonrecombinant microbial production of γ-PGA via fermentation processes. In view of its commercial importance, the emphasis is on l-glutamic acid independent producers (i.e. microorganisms that do not require feeding with the relatively expensive amino acid l-glutamic acid to produce γ-PGA), but glutamic acid dependent production is discussed for comparison. Strategies for improving production, reducing costs and using renewable feedstocks are discussed.  相似文献   

9.
Fed-batch cultures of Bacillus licheniformis produced poly--glutamic acid (PGA), a water-soluble biodegradable polymer. PGA reached 35 g l–1 with a productivity of 1 g l–1 h–1 by pulsed-feeding of citric acid (1.44 g h–1) and l-glutamic acid (2.4 g h–1) when citric acid was depleted from the culture medium.  相似文献   

10.
Poly(-glutamic acid) (PGA) production in Bacillus subtilis IFO3335 was studied. When l-glutamic acid, citric acid, and ammonium sulfate were used as carbon and nitrogen sources, a large amount of PGA without a by-product such as a polysaccharide was produced. The time courses of cell growth, PGA, glutamic acid, and citric acid concentrations during cultivation were investigated. It was found that glutamic acid added to the medium was apparently not assimilated. It can be presumed that the glutamic acid unit in PGA is mainly produced from citric acid and ammonium sulfate. The PGA productivity was investigated at various concentrations of ammonium sulfate in the media, which caused the depression of cell growth, high productivity of PGA, and the production of PGA with a high relative molecular mass. The yield of PGA determined by gel permeation chromatography (GPC) reached approximately 20 g/l. This yield was the highest value for PGA production by B. subtilis IFO3335, suggesting that B. subtilis IFO3335 was a bacterium that could produce PGA effectively. Time courses relative to the molecular mass of PGA at various concentrations of ammonium sulfate were investigated. It was suggested that B. subtilis IFO3335 excreted a PGA degradation enzyme with the progress of cultivation and that PGA was degraded by this enzyme. Correspondence to: M. Kunioka  相似文献   

11.
Poly(-glutamic acid) (PGA) production in Bacillus subtilis IFO3335 was studied. PGA was only slightly produced from medium (100 ml) containing 2 g citric acid and 0.5 g ammonium sulfate in B. subtilis IFO3335. When 0.01 g/100 ml l-glutamine was added to this medium, a large amount of PGA (0.45 g/100 ml), without any by-products such as polysaccharides, was produced. The changes in cell growth, and PGA, glutamic acid, citric acid and ammonium sulfate concentrations in this medium during cultivation were investigated. It was found that PGA was effectively produced for the short time of 20 h after an induction period and that glutamic acid was scarcely excreted during PGA production. PGA could be effectively produced using this medium containing l-glutamine, citric acid and ammonium sulfate. It is suggested that a small amount of l-glutamine added to the medium activated enzymes in the pathway of PGA synthesis in B. subtilis IFO3335. It can be presumed that the enzyme catalyzing the reaction from 2-oxoglutaric acid to l-glutamic acid was glutamate synthase in this bacterium.  相似文献   

12.
A bacterium that produced a large amount of poly(γ-glutamic acid) (PGA) when it was grown aerobically in a culture medium containing ammonium salt and sugar as sources of nitrogen and carbon, respectively, was isolated from soil. The bacterium, strain TAM-4, was classified as Bacillus subtilis. The maximum PGA production (22.1 mg/ml) was obtained when it was grown in a medium containing 1.8% ammonium chloride and 7.5% fructose at 30°C for 96 h with shaking. Some properties of the PGA obtained at different times of cultivation were investigated by gel permeation chromatography, SDS–PAGE, and measurement of viscosity, and calculation of the d/l ratio of glutamic acid constituting PGA. The results suggested that PGA was elongated with no changes in the diastereoisomer ratio in the molecule.  相似文献   

13.
The prognosis of liver cancer remains poor, but recent advances in nanotechnology offer promising possibilities for cancer treatment. Novel adjuvant, amphiphilic nanoparticles (NPs) composed of l-phenylalanine (Phe)-conjugated poly(γ-glutamic acid) (γ-PGA-Phe NPs) having excellent capacity for carrying peptides, were found to have the potential for use as a peptide vaccine against tumor models overexpressing artificial antigens, such as ovalbumin (OVA). However, the anti-tumor potential of γ-PGA-Phe NPs vaccines using much less immunogenic tumor-associated antigen (TAA)-derived peptide needs to be clarified. In this study, we evaluated the effectiveness of immunization with EphA2, recently identified TAA, derived peptide-immobilized γ-PGA-Phe NPs (Eph-NPs) against mouse liver tumor of MC38 cells (EphA2-positive colon cancer cells). Immunization of normal mice with Eph-NPs resulted in generation of EphA2-specific type-1 CD8+ T cells. Immunization with Eph-NPs tended to provide a degree of anti-MC38 liver tumor protection more than that observed for immunization with the mixture of EphA2-derived peptide and complete Freund’s adjuvant (Eph + CFA). Neither Eph-NPs nor Eph + CFA vaccines inhibited tumor growth of BL6, EphA2-negative melanoma cells. Splenocytes isolated from MC38-bearing mice treated with Eph-NPs showed strong and specific cytotoxic activity against MC38 cells. Immunization with Eph + CFA induced liver damage as evidenced by elevation of serum alanine aminotransferase, while Eph-NPs vaccination did not exhibit any toxic damage to the liver. These results demonstrated that immunization with Eph-NPs displayed anti-tumor effects against liver tumor by generating acquired immunity equivalent to the toxic adjuvant CFA, suggesting that safe γ-PGA-Phe NPs could be applied clinically for the vaccine treatment of liver cancer.  相似文献   

14.
A simple and valid ultraviolet (UV) spectrophotometric method for the determination of poly(γ-glutamic acid) is developed. The method is based on the UV absorption spectrum of γ-PGA in aqueous solution, which exhibits a maximum absorption wavelength at 216 nm. The results obtained were comparable to those obtained with the reported high-performance liquid chromatography (HPLC) method according to ICH guidelines. Under the proposed procedure, the calibration graph is linear over the range of 20-200 μg/ml with regression correlation coefficient of 0.9997. Precision (%R.S.D.<1.50) and recovery (%R.>99.29%) are good. The limit of detection (LOD) and limit of quantitation (LOQ) are 0.39 and 1.19 μg/ml, respectively. These results agree well with those of HPLC method. Its spectrum properties studies showed that the spectrum of γ-PGA remarkably changed with an increase in temperature due to γ-PGA was digested into glutamate monomer. In spite of this, the determining procedure could carried out in a wide temperature range (25-50°C). In addition, the method is not influenced by the molecular weight, but the measurement system need to control in pH 3.0-10.0 and ionic strength not more than 0.5M. The proposed method is applied successfully for high-throughput quantification of poly(γ-glutamic acid) in biological samples. The advantages of the UV method are simplicity of operation, rapidity, sensitive, low-cost and high-throughput.  相似文献   

15.
Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed.  相似文献   

16.
17.
Poly(γ-glutamic acid) (PGA) production in Bacillus subtilis IF03335 was studied. When citric acid as a carbon source was added to a glutamic acid medium containing L-glutamic acid and ammonium sulfate, a large amount of pure PGA was produced. On the other hand, when glucose was added to the glutamic acid medium, a by-product was produced, which seemed to be a polysaccharide. Moreover, the mode of hydrolysis was investigated with PGA in aqueous solutions at 80, 100, and 120°C by monitoring the time-dependent changes in the molecular weights. Hydrolytic degradation of PGA was found to proceed through a random chain scission.  相似文献   

18.
Cao M  Geng W  Liu L  Song C  Xie H  Guo W  Jin Y  Wang S 《Bioresource technology》2011,102(5):4251-4257
A new glutamic acid independent poly-γ-glutamic acid (γ-PGA) producing strain, which was identified as Bacillusamyloliquefaciens LL3 by analysis of 16S rDNA and gyrase subunit A gene (gyrA), was isolated from fermented food. The product had a molecular weight of 470, 801 and l-glutamate monomer content of 98.47%. The pre-optimal medium, based on single-factor tests and orthogonal design, contained 50 g/L sucrose, 2 g/L (NH4)2SO4, 0.6 g/L MgSO4, and provided well-balanced changes in processing parameters and a γ-PGA yield of 4.36 g/L in 200 L system. The γ-PGA synthetase genes pgsBCA were cloned from LL3, and successfully expressed by pTrcLpgs vector in Escherichia coli JM109, resulting the synthesis of γ-PGA without glutamate. This study demonstrates the designedly improved yield of γ-PGA in 200 L system and the first report of pgsBCA from glutamic acid independent strain, which will benefit the metabolized mechanism investigation and the wide-ranging application of γ-PGA.  相似文献   

19.
We have synthesized poly-γ-glutamic acid (PGA) modified with a synthetic trivalent glyco-ligand (TriGalNAc) for the hepatocyte asialoglycoprotein receptor (ASGP-R). We investigated in vivo distribution of unmodified PGA and TriGalNAc-modified PGA (TriGalNAc-PGA) in mice after intravenous injection. Most of unmodified PGA administered was transported to the bladder over 20–80 min, suggesting a rapid excretion of unmodified PGA into urine. In contrast, TriGalNAc-PGA was found exclusively in the liver over the same period of time. We further synthesized TriGalNAc-PGA–primaquine conjugate (TriGalNAc-PGA–PQ), and investigated binding, uptake, and catabolism of the conjugate by rat hepatocytes. Our studies indicated that approximately 250 ng per million cells of the conjugate bound to one million rat hepatocytes at 0 °C, and approximately 2 μg per million cells of the conjugate was taken up over 7 h incubation at 37 °C. Furthermore, our results suggested that TriGalNAc-PGA–PQ was almost completely degraded over 24 h, and small degradation products were secreted into cell culture medium.The results described in this report suggest that the TriGalNAc ligand can serve as an excellent targeting device for delivery of PGA-conjugates to the liver hepatocytes, and rat hepatocytes possess sufficient capacity to digest PGA even modified with other substituents.  相似文献   

20.
 Eight strains of the genus Aureobasidium obtained from culture collections were tested for their capability to produce poly(β-L-malic acid) (PMA). Four of the tested strains showed positive results. The most productive strain, A. pullulans CBS 591.75, was used to study the production of PMA in stirred-tank reactors. It was found that PMA was mainly produced in the late exponential phase, and the production related positively to glucose consumption. At the beginning of the fermentation the pH increased from 4.0 to about 7.0; subsequently the pH decreased and remained stable at around 3.0–3.5 for several days. Temperatures higher than 25°C were detrimental to PMA production and cell growth. PMA production and cell growth at 20°C and 25°C exhibited no significant differences. PMA production and cell growth were studied under pH-controlled fermentation (at pH 2.0, 4.0, 5.5). The highest PMA production occurred at pH 4.0. PMA production was reduced at pH 2.0 although quite reasonable cell growth occurred at this pH value. Under optimized conditions 9.8 g PMA/l was produced during 9 days of fermentation in the stirred-tank reactors with an overall yield of 0.11 g PMA/g glucose. A procedure for the isolation of PMA and its separation from the other components of the fermentation broth was developed. The isolated PMA was characterized by 1H and 13C-NMR spectroscopy as well as by infrared absorption spectroscopy. Gel-permeation chromatography revealed a relative molecular mass of approximately 3000–5000 by comparison with polyethylene glycol standards. Received: 13 February 1996/Received revision: 25 April 1996/Accepted: 1 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号