首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A further investigation of the lipolysis induced by medium-chain triglyceride (MCT) was conducted on C57BL/6J mice fed with a diet containing 2% MCT or 2% long-chain triglyceride (LCT). Blood norepinephrine, body fat and blood lipid variables, and the protein or mRNA expression of the genes relevant to lipolysis were measured and analyzed in the white and brown adipose tissue (WAT, BAT). Decreased body fat and improved blood lipid profiles attributable to MCT were confirmed. A higher level of blood norepinephrine was observed with the MCT diet. The adipose triglyceride lipase (ATGL) activity and its mRNA expression, the expression of protein and mRNA of the beta 3 adrenergic receptor (β3-AR) in both WAT and BAT, and the hormone-sensitive lipase (HSL) activity and its mRNA expression in BAT were significantly increased in the mice with MCT feeding. The lipolysis induced by MCT might be partially mediated by increasing norepinephrine, thereafter signaling the up-regulation of β3-AR, ATGL, and HSL in WAT and BAT.  相似文献   

2.
Lipid accumulation in pancreatic beta-cells during high-fat (HF) feeding may be involved in inducing a defective insulin secretion due to lipotoxicity. Hormone-sensitive lipase (HSL) is expressed and active in beta-cells, but its importance for islet dysfunction during the development of type 2 diabetes is not known. In this study, prolonged HF feeding of C57BL/6J mice, resulted in decreased HSL expression in islets, representing only 25+/-4% of the levels observed in controls. This was paralleled by triglyceride accumulation and blunted insulin secretion both in vivo and in vitro. After switching the HF diet to a LF diet, HSL expression increased 10-fold compared to the HF fed mice. This was accompanied by reduced triglyceride levels and a restored insulin secretion. These results support the notion that HSL plays a critical role in the regulation of intracellular triglyceride levels in beta-cells, and that downregulation of the enzyme may serve to protect against fatty acid-induced islet dysfunction.  相似文献   

3.
The mobilization of free fatty acids from adipose triacylglycerol (TG) stores requires the activities of triacylglycerol lipases. In this study, we demonstrate that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major enzymes contributing to TG breakdown in in vitro assays and in organ cultures of murine white adipose tissue (WAT). To differentiate between ATGL- and HSL-specific activities in cytosolic preparations of WAT and to determine the relative contribution of these TG hydrolases to the lipolytic catabolism of fat, mutant mouse models lacking ATGL or HSL and a mono-specific, small molecule inhibitor for HSL (76-0079) were used. We show that 76-0079 had no effect on TG catabolism in HSL-deficient WAT but, in contrast, essentially abolished free fatty acid mobilization in ATGL-deficient fat. CGI-58, a recently identified coactivator of ATGL, stimulates TG hydrolase activity in wild-type and HSL-deficient WAT but not in ATGL-deficient WAT, suggesting that ATGL is the sole target for CGI-58-mediated activation of adipose lipolysis. Together, ATGL and HSL are responsible for more than 95% of the TG hydrolase activity present in murine WAT. Additional known or unknown lipases appear to play only a quantitatively minor role in fat cell lipolysis.  相似文献   

4.
The objective of this study was to assess how short-term feeding of high levels of dietary medium-chain triglyceride (MCT) affect energy expenditure and postprandial substrate oxidation rates in normal-weight, premenopausal women. Eight healthy women were fed both a MCT-rich and an isocaloric long-chain triglyceride (LCT)-rich diet for two 1-week periods separated by a minimum of 21 days. The energy intake in each diet was 45% carbohydrates, 40% fat, and 15% protein. The 2 diets had either 60.81% or 1.11% of total fat energy from MCT with the remaining fat energy intake from LCT. On days 1 and 7 of each diet, resting metabolic rate and postprandial energy expenditure (EE) were measured by indirect calorimetry with a ventilated hood. Results indicated on days 1 and 7, there were no significant differences between diets for resting metabolic rate or mean postprandial EE. On both days 1 and 7, fat oxidation for the MCT-rich diet was significantly greater (0.0001 相似文献   

5.
The lack of efficiency of classical treatments for obesity has led to propose alternative strategies. In order to obtain information about the effects of dietary fatty acid composition on body fat and protein metabolism, overweight female rats were fed on isoenergetic diets, using either medium-chain (MCT) or long-chain (LCT) triglycerides as a lipid source. After 23 days, the MCT group had mildly decreased body weight but greatly reduced adipose tissue depots. All fat depots were significantly diminished. MCT-fed rats showed a decrease in some hormones involved in energy balance, such as leptin and triiodothyronine. Feeding MCT resulted in improvements in nitrogen balance. Muscle protein content was similar in both treatments despite an increase in protein degradation in the MCT group. The present data clearly show that a diet with MCT as lipid fuel depresses weight gain and fat stores, relative to a standard LCT diet.  相似文献   

6.
《PLoS biology》2013,11(2)
When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.  相似文献   

7.
8.
Food restriction(FR) and refeeding(Re) have been suggested to impair body mass regulation and thereby making it easier to regain the lost weight and develop over-weight when FR ends. However, it is unclear if this is the case in small mammals showing seasonal forging behaviors. In the present study, energy budget, body fat and serum leptin level were measured in striped hamsters that were exposed to FR-Re. The effects of leptin on food intake, body fat and genes expressions of several hypothalamus neuropeptides were determined. Body mass, fat content and serum leptin level decreased during FR and then increased during Re. Leptin supplement significantly attenuated the increase in food intake during Re, decreased genes expressions of neuropepetide Y(NPY) and agouti-related protein(AgRP) of hypothalamus and leptin of white adipose tissue(WAT). Hormone-sensitive lipase(HSL) gene expression of WAT increased in leptin-treated hamsters that were fed ad libitum, but decreased in FR-Re hamsters. This indicates that the adaptive regulation of WAT HSL gene expression may be involved in the mobilization of fat storage during Re, which partly contributes to the resistance to FR-Re-induced overweight. Leptin may be involved in the down regulations of hypothalamus orexigenic peptides gene expression and consequently plays a crucial role in controlling food intake when FR ends.  相似文献   

9.
10.
Hydrolysis of triglycerides is central to energy homeostasis in white adipose tissue (WAT). Hormone-sensitive lipase (HSL) was previously felt to mediate all lipolysis in WAT. Surprisingly, HSL-deficient mice show active HSL-independent lipolysis, suggesting that other lipase(s) also mediate triglyceride hydrolysis. To clarify this, we used functional proteomics to detect non-HSL lipase(s) in mouse WAT. After cell fractionation of intraabdominal WAT, most non-HSL neutral lipase activity is localized in the 100,000 x g infranatant and fat cake fractions. By oleic acid-linked agarose chromatography of infranatant followed by elution in a 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid gradient, we identified two peaks of esterase activity using p-nitrophenyl butyrate as a substrate. One of the peaks contained most of the lipase activity. In the corresponding fractions, gel permeation chromatography and SDS-PAGE, followed by tandem mass spectrometric analysis of excised Coomassie Blue-stained peptides, revealed carboxylesterase 3 (triacylglycerol hydrolase (TGH); EC 3.1.1.1). TGH is also the principle lipase of WAT fat cake extracts. Partially purified WAT TGH had lipase activity as well as lesser but detectable neutral cholesteryl ester hydrolase activity. Western blotting of subcellular fractions of WAT and confocal microscopy of fibroblasts following in vitro adipocytic differentiation are consistent with a distribution of TGH to endoplasmic reticulum, cytosol, and the lipid droplet. TGH is responsible for a major part of non-HSL lipase activity in WAT in vitro and may mediate some or all HSL-independent lipolysis in adipocytes.  相似文献   

11.
Objective: To test the hypothesis that adipose tissue could be one of the primary targets through which medium‐chain fatty acids (MCFAs) exert their metabolic influence. Research Methods and Procedures: Sprague‐Dawley rats were fed a control high‐fat diet compared with an isocaloric diet rich in medium‐chain triglycerides (MCTs). We determined the effects of MCTs on body fat mass, plasma leptin and lipid levels, acyl chain composition of adipose triglycerides and phospholipids, adipose tissue lipoprotein lipase activity, and the expression of key adipogenic genes. Tissue triglyceride content was measured in heart and gastrocnemius muscle, and whole body insulin sensitivity and glucose tolerance were also measured. The effects of MCFAs on lipoprotein lipase activity and adipogenic gene expression were also assessed in vitro using cultured adipose tissue explants or 3T3‐L1 adipocytes. Results: MCT‐fed animals had smaller fat pads, and they contained a considerable amount of MCFAs in both triglycerides and phospholipids. A number of key adipogenic genes were down‐regulated, including peroxisome proliferator activated receptor γ and CCAAT/enhancer binding protein α and their downstream metabolic target genes. We also found reduced adipose tissue lipoprotein lipase activity and improved insulin sensitivity and glucose tolerance in MCT‐fed animals. Analogous effects of MCFAs on adipogenic genes were found in cultured rat adipose tissue explants and 3T3‐L1 adipocytes. Discussion: These results suggest that direct inhibitory effects of MCFAs on adiposity may play an important role in the regulation of body fat development.  相似文献   

12.
13.
Prolonged fasting is characterized by lipid mobilization (Phase 2), followed by protein breakdown (Phase 3). Knowing that body lipids are not exhausted in Phase 3, we investigated whether changes in the metabolic status of prolonged fasted rats are associated with differences in the expression of epididymal adipose tissue proteins involved in lipid mobilization. The final body mass, body lipid content, locomotor activity and metabolite and hormone plasma levels differed between groups. Compared with fed rats, adiposity and epididymal fat mass decreased in Phase 2 (approximately two- to threefold) and Phase 3 (∼4.5-14-fold). Plasma nonesterified fatty acids (NEFA) concentrations were increased in Phase 2 (approximately twofold) and decreased in Phase 3 (approximately twofold). Daily locomotor activity was markedly increased in Phase 3 (∼11-fold). Compared with the fed state, expressions of adipose triglyceride lipase (ATGL; mRNA and protein), hormone-sensitive lipase (HSL; mRNA) and phosphorylated HSL at residue Ser660 (HSL Ser660) were increased during Phase 2 (∼1.5-2-fold). HSL (mRNA and protein) and HSL Ser660 levels were lowered during Phase 3 (∼3-12-fold). Unlike HSL and HSL Ser660, ATGL expression did not correlate with circulating NEFA, mostly due to data from animals in Phase 3. At this stage, ATGL could play an essential role for maintaining a low mobilization rate of NEFA, possibly to sustain muscle performance and hence increased locomotor activity. We conclude that ATGL and HSL are not coordinately regulated in response to changes in fuel partitioning during prolonged food deprivation, ATGL appearing as the major lipase in late fasting.  相似文献   

14.
Although medium chain triglyceride (MCT) is less calorically dense than long chain triglyceride (LCT), it produces a greater thermic effect following ingestion. We hypothesized that the previously observed high rate of thermogenesis produced by MCT overfeeding was due to hepatic de novo synthesis of long chain fatty acids (LCFA) from the excess medium chain fatty acids (MCFA). To study this, we compared the effects of overfeeding MCT- and LCT-containing diets on blood lipid profiles. Ten in-patient, nonobese males were overfed (150% of estimated energy requirements) two formula diets for 6 days each, in a randomized crossover design. Diets differed only in the composition of the fat and contained either 40% of energy as MCT or LCT (soybean oil). The major differences between diets in the resulting pattern of blood lipids were: 1) a reduction in fasting serum total cholesterol concentrations with the LCT, but not the MCT diet; and 2) a threefold increase in fasting serum triglyceride concentrations with MCT, but not LCT, diet. Moreover, 10% of the fasting triglyceride fatty acids were medium chain and 40% were 16:0 with the MCT diet. This compared to 1% and 20% for medium chain and 16:0, respectively, with the LCT diet. In addition, there were increases in 16:1, 18:0, and 18:1 in the triglycerides during MCT feeding. The changes in fatty acids in triglycerides with MCT feeding are consistent with the hypothesis that excess dietary MCT cause a significant increase in the hepatic synthesis of these fatty acids from MCFA through de novo synthesis and/or chain elongation and desaturation. These processes could account for the higher rate of postprandial thermogenesis with MCT as compared to LCT.  相似文献   

15.
In our previous studies, medium- and long-chain triacylglycerols (MLCT), randomly interesterified triacylglycerols containing medium-chain and long-chain fatty acids in the same glycerol molecule, significantly reduced body fat accumulation in humans and rats. To clarify mechanism(s) for this effect of MLCT, we measured energy expenditure and hepatic fatty acid metabolism in rats by comparison with long-chain triacylglycerols (LCT) or medium-chain triacylglycerols (MCT). MLCT, compared with LCT, showed significantly lower body fat accumulation, higher 24-h energy expenditure and acyl-CoA dehydrogenase activity measured using octanoyl-CoA as a substrate, and similar lipogenic activity. MCT, compared with LCT, showed significantly higher energy expenditure, but fat accumulation was comparable. Additionally, MCT exhibited significantly higher lipogenic activity than the other oils. These data suggest that enhancement of energy expenditure and medium-chain fatty acids (MCFA) oxidation without activating de novo lipogenesis are responsible at least for the lower body fat accumulation in rats fed MLCT. The activation of hepatic lipogenesis by excessive intake of MCFA might counteract their preventive effects on body fat accumulation.  相似文献   

16.
This study compared the serum lipid concentrations after a single dose of medium-chain triglycerides (MCT) or long-chain triglycerides (LCT) between individuals grouped according to the body mass index (BMI). Twenty-five males participated as volunteers, the test diet containing 10 g of MCT or LCT. Blood samples were collected up to 6 h after the intake of a test diets. The LCT diet resulted in significantly greater increases in areas under the curves (AUCs) for serum and chylomicron triglyceride in the BMI > or = 23 kg/m2 group than those in the BMI < 23 kg/m2 group. The magnitude of response after intake of the MCT diet by the BMI > or = 23 kg/m2 group was significantly lower than that after the LCT diet. These results suggest that, in subjects with BMI > or = 23 kg/m2, the intake of MCT is preferable to that of LCT for maintaining postprandial triglyceride at a low concentration.  相似文献   

17.
Obesity, liver steatosis and type 2 diabetes are major diseases partly imputed to energy-dense diets rich in long chain triglycerides (LCT). The search for bioactive nutrients that help to overcome metabolic diseases is a growing field. In this regard, medium chain triglycerides (MCT) were shown to promote lipid catabolism and to stimulate brown adipose tissue thermogenesis. The objective of our study was to evaluate if the replacement of LCT by MCT in high-fat diets could prevent and/or reduce metabolic disorders. For this purpose, two cohorts of C57BL/6 mice were fed during 10 weeks with three isocaloric high-fat diets with variable MCT content. Cohort A was composed of lean mice while cohort B was composed of obese, insulin resistant mice. In cohort A, replacement of LCT by MCT preserved metabolic health, in part by triggering hepatic thermogenesis. We further found that medium chain fatty acids promote thermogenesis markers within cultured hepatocytes in a FFAR1/GPR40-dependent manner. In cohort B, high-fat diets enriched in MCT promoted body fat depletion and caused metabolic health improvement, together with the induction of thermogenesis markers in the liver as well as in subcutaneous white adipose tissue. Our study supports that replacement of LCT by MCT in high-fat diets improves the metabolic features associated with obesity.  相似文献   

18.
  • 1.1. Uptake of l-leucine, l-phenylalanine, l-proline and l-lysine into brush border membrane vesicles from rats fed either a medium-chain triglyceride (MCT) or a long-chain triglyceride (LCT) diet was studied under conditions of the presence or absence of a Na+ gradient.
  • 2.2. From the results of initial rate, Na+-dependent transport in LCT feeding were lower than in feeding MCT. The Na+-independent transport did not vary in either group except for l-lysine uptake.
  • 3.3. For l-leucine, l-phenylalanine and l-proline in Na+ dependence, kinetic analysis revealed 4–6-fold smaller Vmax values in LCT group than in MCT group. l-Lysine in Na+-independent transport was 10-fold lower in LCT group than in MCT group. The Km values were not affected by feeding the LCT or MCT diet.
  • 4.4. It is clear that amino acid transport is regulated by different types of dietary fat. We consider that the alteration of transport activity is attributable to the changes in number of membrane-bound transport carriers but not to their affinity.
  相似文献   

19.
Transesterification between medium-chain fatty acid triglycerides (MCT) and long-chain fatty acid triglycerides (LCT) in a nonsolvent system was investigated using surfactant modified lipase which is a complex of lipase, Rhizopus japonicus and surfactant, sorbitan monostearate. 74% conversion of was obtained after a 48-h reaction period, and the triglyceride composition was well described by the 1, 3-random 2-random stochastic model. The transesterification reaction between MCT and LCT closely followed the simple kinetic model, and the change in MCT and LCT contents could be simulated using one parameter. The effects of the water activity (A(w)) of modified lipase, the water content of the reaction system and the reaction temperature on the reaction rate were studied. A modified lipase A(w) of 0.35 and a water content of the reaction system at 0.09 wt % showed the highest activity. Inactivation did not occur below 60 degrees C, however, the activity decreased at temperatures over 70 degrees C.  相似文献   

20.
Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the regulation of lipolysis were evaluated in 3T3-L1 adipocytes and in mice. rCT-1 treatment stimulated basal glycerol release in a concentration- and time-dependent manner in 3T3-L1 adipocytes. rCT-1 (20 ng/ml for 24 h) raised cAMP levels, and in parallel increased protein kinase (PK)A-mediated phosphorylation of perilipin and hormone sensitive lipase (HSL) at Ser660. siRNA knock-down of HSL or PKA, as well as pretreatment with the PKA inhibitor H89, blunted the CT-1-induced lipolysis, suggesting that the lipolytic action of CT-1 in adipocytes is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased adipose triglyceride lipase (desnutrin) content in adipose tissue. These results showed that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号