首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin E deficiency from birth or infancy has recently been found to increase anxiety-like behavior in rodents. The present study was undertaken to elucidate the effect of dietary vitamin E deficiency on anxiety in adult rats in comparison with juvenile rats. Male Wistar rats, 3 or 10 weeks old, were divided into two groups and fed a control or vitamin E-deficient diet for 4 weeks. The results of behavioral analysis revealed that vitamin E-deficiency increased anxiety in both juvenile and adult rats. Plasma, liver, and brain α-tocopherol concentrations decreased significantly due to vitamin E deficiency in both age groups. Plasma corticosterone concentrations were higher in the vitamin E-deficient rats in response to the stress of a behavioral test. Based on these results, we conclude that dietary vitamin-E deficiency induces anxiety in adult rats as well as juvenile rats. This might be due to an elevated plasma corticosterone concentration.  相似文献   

2.
The effects of dietary antioxidant vitamins E and C on exercise endurance capacity and mitochondrial oxidation were investigated in rats. The endurance capacity of both vitamin E-deficient and vitamin C-supplemented, E-deficient rats was significantly (P less than 0.05) lower (38.1 and 33.6%, respectively) than control animals. Compared with the normal and vitamin E-deficient rats, there was a significant (P less than 0.05) increase in the concentration of vitamin C in blood and liver of the vitamin E-deficient, C-supplemented animals. Hence dietary vitamin C supplementation does not prevent the inhibition of exercise endurance capacity or increased hemolysis seen in vitamin E deficiency. The mitochondrial activities for the oxidation of palmitoyl carnitine and alpha-ketoglutarate were significantly (P less than 0.05) decreased by a single bout of exercise in brown adipose tissue but not in muscle, heart, or liver from vitamin C-supplemented, E-deficient groups of rats when compared with the activities in the tissue from the same group of rats killed at rest. Similar results were also seen in brown adipose tissue from vitamin E-deficient rats. The results suggest a tissue-specific role for vitamins E and C in substrate oxidation and show that the poor endurance capacity of vitamin E-deficient rats cannot be attributed to any changes in the mitochondrial activity in skeletal or cardiac muscles. It is also concluded that vitamin C supplementation, at least at the dose employed in the present study, cannot counteract the detrimental effects associated with vitamin E deficiency.  相似文献   

3.
Experiments were conducted to determine the influence of dietary levels of vitamin A and alpha-tocopherol on the amounts and composition of retinyl esters in the retinal pigment epithelium of light-adapted albino rats. Groups of rats were fed diets containing alpha-tocopherol and either no retinyl palmitate, adequate retinyl palmitate, or excessive retinyl palmitate. Other groups of rats received diets lacking alpha-tocopherol and containing the same three levels of retinyl palmitate. Retinoic acid was added to diets lacking retinyl palmitate. After 27 weeks, the animals were light-adapted to achieve essentially total visual pigment bleaches, and the neural retinas and retinal pigment epithelium-eyecups were then dissected from each eye for vitamin A ester determinations. Almost all of the retinyl esters were found in the retinal pigment epithelium-eyecup portions of the eyes, mainly as retinyl palmitate and retinyl stearate. Maintaining rats on a vitamin A-deficient, retinoic acid-containing diet led to significant reductions in retinal pigment epithelial retinyl ester levels in rats fed both the vitamin E-supplemented and vitamin E-deficient diets; contrary to expectations, the effect of dietary vitamin A deficiency was more pronounced in the vitamin E-supplemented rats. Vitamin A deficiency in retinoic acid-maintained animals also led to significant reductions in retinyl palmitate-to-stearate ester ratios in the retinal pigment epithelia of both vitamin E-supplemented and vitamin E-deficient rats. Excessive dietary intake of vitamin A had little, if any, effect on retinal pigment epithelial retinyl ester content or composition. Vitamin E deficiency resulted in significant increases in retinal pigment epithelial retinyl palmitate content and in palmitate-to-stearate ester ratios in rats fed all three levels of vitamin A, but had little effect on retinal pigment epithelial retinyl stearate content. In other tissues, vitamin E deficiency has been shown to lower vitamin A levels, and it is widely accepted that this effect is due to autoxidative destruction of vitamin A. The increase in retinal pigment epithelial vitamin A ester levels in response to vitamin E deficiency indicates that vitamin E does not regulate vitamin A levels in this tissue primarily by acting as an antioxidant, but rather may act as an inhibitor of vitamin A uptake and/or storage. The effect of vitamin E on pigment epithelial vitamin A levels may be mediated by the vitamin E-induced change in retinyl palmitate-to-stearate ratios.  相似文献   

4.
Influence of vitamin E on polyamine metabolism in ozone-exposed rat lungs   总被引:2,自引:0,他引:2  
The influence of vitamin E (E) on lung polyamine metabolism of rats exposed to ozone (O3) was examined. Rats fed diets wither E-deficient or supplemented with 1000 IU E/kg were exposed to 0.5 +/- 0.05 ppm O3 or filtered room air continuously for 5 days. They were then sacrificed and their lungs were analyzed for biochemical changes. Lung E content was strongly associated with the dietary level, and increased (36%, P less than 0.05) after O3 exposure only in E-supplemented rats. Lung polyamine metabolism was not affected in the air-control rats by E level, but increased after O3 exposure in both dietary groups. The activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase were elevated above air controls. However, the increases were significant only for E-deficient rats when compared to E-supplemented rats. After O3 exposure, putrescine increased significantly in both dietary groups; spermidine increased but was significantly higher only in the E-deficient group; and spermine remained unchanged in both dietary groups. Elevated E content of supplemented rat lungs after O3 exposure may represent its mobilization under oxidant stress. Increased polyamine metabolism of E-deficient rats suggests either a greater sensitivity to injury by O3 or a possible antioxidant function for polyamines compensating for E deficiency.  相似文献   

5.
《Free radical research》2013,47(5-6):315-322
Effects of dietary vitamin E deficiency on the fatty acid compositions of total lipids and phospholipids were studied in several tissues of rats fed a vitamin E-deficient diet for 4, 6, and 9 months. No significant differences were observed between the vitamin E deficiency and controls except in the fatty acid profiles of liver total lipids. Triacylglycerol (TAG) accumulation was found in the liver of rats fed a vitamin E-deficient diet. The levels of TAG-palmitate and -oleate increased particularly in the liver from such animals. The fatty acid compositions of hepatic phospholipids were not affected by the diet. Increased TAG observed in the liver of rats fed a vitamin E-deficient diet was restored to normal when the diet was supplemented with 20 mg α-tocopheryl acetate/kg diet. These findings indicate that dietary vitamin E deficiency causes TAG accumulation in the liver and that the antioxidant, vitamin E, is capable of preventing free radical-induced liver injury.  相似文献   

6.
We have previously reported the presence of dying cells in the granule cell layer (GCL) of adult rat dentate gyrus (DG), where neurogenesis occurs. In particular, we found that cell death in the GCL increased in vitamin E deficiency and decreased in vitamin E supplementation. These findings were regarded as related to changes in neurogenesis rate, which in turn was influenced by vitamin E availability; a neuroprotective effect of vitamin E on cell death was also proposed. In order to verify this latter hypothesis, we have studied cell death in all layers of DG in vitamin E-deficient and vitamin E-supplemented rats and in control rats at different ages, using TUNEL and nick translation techniques. The phenotype of TUNEL-positive cells was characterized and the existence of dying BrdU-positive cells was investigated. Dying cells with neuronal phenotype were observed throughout the DG in all experimental groups. The number of TUNEL-positive cells decreased from juvenile to adult age. A higher number of TUNEL-positive cells in vitamin E-deficient rats and a lower number in vitamin E-supplemented rats, with respect to age-matched controls, were found; moreover, in these groups, TUNEL-positive cells had a different percentage distribution in the different layers of the DG. Our results confirm the occurrence of cell death in DG, demonstrate that cell death affects neuronal cells and support the hypothesis that the effect of vitamin E on cell death is not related to neurogenesis.  相似文献   

7.
The effect of dietary vitamin E on the fetal ischemic distress induced by clamping the uterotubal vessels of pregnant rats was studied. The fetal heart rate was measured by the pulsed doppler technique as an index of fetal distress induced by ischemia. On reperfusion after clamping the vessels for 9 min, the decreased fetal heart rate was restored to normal rapidly and completely in the E-supplemented group, but slowly and incompletely in the E-deficient and control groups. On reperfusion after ischemia, the amounts of lipid peroxides, measured as thiobarbituric acid (TBA)-reactive substances, were greatly increased in the fetal brain and liver and in the placenta of in the E-deficient and control groups, but not in the E-supplemented group. The vitamin E concentrations in fetal tissues were less than 10% of those in the maternal tissues. Significant differences were found in the vitamin E concentrations in the maternal serum and liver in the three groups of rats given diet containing different amounts of vitamin E for 2 weeks. No significant differences were found between the vitamin E-deficient and control groups in the levels of vitamin E in the fetal brain and liver and the placenta, but these levels were significantly lower than those in the E-supplemented group.  相似文献   

8.
Effects of vitamin E deficiency and its restoration on biochemical characteristics of hepatic peroxisomes were studied. Rats were maintained on the vitamin E-deficient diet for 25 weeks and then on a diet supplemented with vitamin E for 5 weeks. Blood hemolysis by hydrogen peroxide and lipid peroxidation in the liver increased markedly in vitamin E-deficient rats. The former returned to the control level after the resupplying of vitamin E, but the latter did not. Of liver peroxisomal enzymes, the activities of catalase, D-amino-acid oxidase and urate oxidase decreased in vitamin E-deficient rats. On the other hand, activities of fatty acyl-CoA oxidase and carnitine acetyltransferase increased significantly in vitamin E-deficient rats. All activities of these peroxisomal enzymes were restored to the control levels in vitamin E-supplemented rats. The activities of the mitochondrial, lysosomal and microsomal enzymes tested showed no apparent change except that the change of mitochondrial palmitoyltransferase was shown to be similar to that of peroxisomal fatty acid oxidation. These results were also supported by cell fractionation techniques. Following the methods of aqueous polymer two-phase systems, the characteristics of peroxisomal surface membranes altered in respect of their hydrophobicity, but not in respect of the surface charge of peroxisomal membranes. These results indicate that peroxisomal functions, especially those of the fatty acid oxidation system, change their activities more sensitively than other intracellular organelles in response to the condition of vitamin E deficiency.  相似文献   

9.
Abstract: Weanling male CD-1 mice were fed control, vitamin E-deficient or selenium-deficient diets for periods of 12 to 20 weeks. α-Tocopherol concentrations in plasma, liver, and testes, as well as in three specific areas in the brain (cerebral hemisphere, cerebellum, and medulla plus pons) were determined by high performance liquid chromatography. Significant concentrations of α-tocopherol were found in all brain samples from vitamin E-deficient animals long after the peripheral tissues were depleted, indicating that brain is more resistant to vitamin E deficiency than peripheral tissues. Cerebellar concentrations of α-tocopherol were consistently lower than those of cerebral hemisphere and medulla-pons. Further more, the cerebellar α-tocopherol concentration sustained a larger decline than the other two brain areas within 6 weeks of vitamin E deficiency treatment. These and other data suggest that cerebellum may be more susceptible to damage from vitamin E deficiency than other parts of the brain. Selenium deficiency did not affect brain a-tocopherol concentrations during the 12 weeks of the study.  相似文献   

10.
Y Z Cao  K O  P C Choy    A C Chan 《The Biochemical journal》1987,247(1):135-140
Lysophosphatidylcholine is the major lysophospholipid in mammalian tissues and has been shown to be cytolytic at high concentrations. In the present study we demonstrated that the level of lysophosphatidylcholine was significantly increased in the heart of rats fed with a vitamin E-deficient diet. Moreover, the cardiac lysophosphatidylcholine level was decreased in rats fed with a high vitamin E diet. The alterations in cardiac lysophosphatidylcholine level by dietary vitamin E were attributed to the changes in the activity of cardiac phospholipase A. Dietary vitamin E affected both phospholipase A1 and A2 in the same manner, but had no effect on the other major enzymes which are responsible for the metabolism of lysophosphatidylcholine. Kinetic studies revealed that the inhibition of enzyme activity by vitamin E was essentially non-competitive. The accumulation of lysophosphatidylcholine in the rat heart may be one of the underlying biochemical causes of the observed cardiac dysfunctions produced during vitamin E deficiency.  相似文献   

11.
12.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

13.
It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress.  相似文献   

14.
The effects of dietary vitamin E and beta-carotene were studied on enzymes involved in arachidonic acid metabolism and other related enzymes in the rat testis. Groups of rats were fed various soybean oil-based semi purified diets. Group 1 was fed a vitamin E-supplemented diet (+E - beta); Group 2 was fed a beta-carotene-supplemented diet (-E + beta); Group 3, the control group (-E - beta) was fed a vitamin E-deficient diet; and Group 4, the standard diet group (S), was fed vitamin E plus beta-carotene-standard diet. Soybean oxidized oil was added to the three diet groups - (+E - beta), (- E + beta) and (- E - beta), whereas the diet of S group contained non-oxidized oil. After 8 weeks rats were killed, blood and testis samples were collected for biochemical determinations. Vitamin E deficiency caused significant increase in testis thiobarbituric acid value and activities of testis NADPH oxidase, testis 15-lipoxygenase and in plasma pyruvate kinase. In contrast, significant decreases were observed in activity of testis prostaglandin synthetase, compared with antioxidant-supplemented diet groups. We also found a significant increase in 15-lipoxygenase activity in (- E + beta) diet group, compared with (- E - beta) diet group. Fatty acid analysis of testis parenchyma indicated decrease in palmitate (16:0) and arachidonate (20:4(n - 6)), and increase in oleate (18:1(n-6)) linoleate (18:2(n - 6)) and linolenate (18:3(n - 3)), when compared (-E - beta) diet group with vitamin E-supplemented diet groups. The results suggest that dietary vitamin E has a role in both enzymatic and non-enzymatic peroxidation of polyunsaturated fatty acids in the testis.  相似文献   

15.
Vitamin E is the major lipid-soluble chain-breaking antioxidant in mammals and plays an important role in normal development and physiology. Deficiency (whether dietary or genetic) results in primarily nervous system pathology, including cerebellar neurodegeneration and progressive ataxia (abnormal gait). However, despite the widely acknowledged antioxidant properties of vitamin E, only a few studies have directly correlated levels of reactive oxygen species with vitamin E availability in animal models. We explored the relationship between vitamin E and reactive oxygen species in two mouse models of vitamin E deficiency: dietary deficiency and a genetic model (tocopherol transfer protein, Ttp-/- mice). Both groups of mice developed nearly complete depletion of alpha-tocopherol (the major tocopherol in vitamin E) in most organs, but not in the brain, which was relatively resistant to loss of alpha-tocopherol. F4-neuroprostanes, an index of lipid peroxidation, were unexpectedly lower in brains of deficient mice compared with controls. In vivo oxidation of dihydroethidium by superoxide radical was also significantly lower in brains of deficient animals. Superoxide production by brain mitochondria isolated from vitamin E-deficient and Ttp-/- mice, measured by electron paramagnetic resonance spectroscopy, demonstrated a biphasic dependence on exogenously added alpha-tocopherol. At low concentrations, alpha-tocopherol enhanced superoxide flux from mitochondria, a response that was reversed at higher concentrations. Here we propose a mechanism, supported by molecular modeling, to explain decreased superoxide production during alpha-tocopherol deficiency and speculate that this could be a beneficial response under conditions of alpha-tocopherol deficiency.  相似文献   

16.
The object of this study was to assess the influence of high levels of dietary vitamin E on vitamin E concentrations in specific areas of the brain. Four-week-old male rats were fed vitamin E-deficient, control, and high-vitamin E (1,000 IU/kg) diets for 4 months. Concentrations of alpha-tocopherol in serum, adipose tissue, liver, cerebrum, cerebellum, and striatum were determined by liquid chromatography with fluorescence detection. In the high-vitamin E group, alpha-tocopherol concentrations in cerebrum, cerebellum, and striatum increased uniformly to 1.4-fold of values in controls; serum, adipose tissue, and liver attained even higher concentrations: 2.2-, 2.2-, and 4.6-fold, respectively, of control values. As observed before, brain levels of alpha-tocopherol were somewhat resistant to vitamin E deficiency, in contrast to the peripheral tissues.  相似文献   

17.
Expression of antioxidant enzymes (AOE), an important mechanism in the protection against oxidative stress, could be modified by the redox status of the cells. The aim of this project was to evaluate the role of vitamin E deficiency in association with a high-cholesterol diet in the hepatic lipid peroxidation and the expression of AOE. Two groups of 6 male rats were fed with a high-cholesterol or a high-cholesterol vitamin E-deficient diet. All animals were sacrificed at 72 days of treatment. Liver lipid peroxidation index (Malondialdehyde; MDA) and hepatic AOE were evaluated. Total liver RNA was extracted, and the steady state messenger RNA (mRNA) levels of glutathion peroxydase, manganese superoxide dismutase, Cu/Zn superoxide dismutase and catalase were examined by northern blot. After 72 days on the diet, a significant increase in the lipid peroxidation index was observed in the vitamin E deficient group (MDA : 4.45 +/- 0.29 nmol/mg protein versus 3.65 +/- 0.1 nmol/mg protein in vitamin E normal group). Despite this oxidative stress, the activities and mRNA levels of liver AOE were not significantly different in the 2 groups. These preliminary results show that chronic vitamin E deficiency associated with high cholesterol diet is able to increase lipid peroxidation without modulation of AOE expression and activity in the liver. This suggests that beneficial effects of dietary vitamin E are due to a plasma antioxidant effect or a cell mediated action, rather than to a specific modulation of cellular enzymes.  相似文献   

18.
Few, if any, studies have examined the effect of vitamin E deficiency on brain mitochondrial oxidative phosphorylation. The latter was studied using brain mitochondria isolated from control and vitamin E-deficient rats (13 months of deficiency) after exposure to iron, an inducer of oxidative stress. Mitochondria were treated with iron (2 to 50 microM) added as ferrous ammonium sulfate. Rates of state 3 and state 4 respiration, respiratory control ratios, and ADP/O ratios were not affected by vitamin E deficiency alone. However, iron uncoupled oxidative phosphorylation in vitamin E-deficient mitochondria, but not in controls. In vitamin E-deficient mitochondria, iron decreased ADP/O ratios and markedly stimulated state 4 respiration; iron had only a modest effect on these parameters in control mitochondria. Thus, vitamin E may have an important role in sustaining oxidative phosphorylation. Low concentrations of iron (2 to 5 microM) oxidized mitochondrial tocopherol that exists in two pools. The release of iron in brain may impair oxidative phosphorylation, which would be exacerbated by vitamin E deficiency. The results are important for understanding the pathogenesis of human brain disorders known to be associated with abnormalities in mitochondrial function as well as iron homeostasis (e.g., Parkinson's disease).  相似文献   

19.
Given the capacity of ruminants to modify diet selection based on metabolic needs, we hypothesised that, when given a choice, lambs experiencing a vitamin E deficiency would consume more of a vitamin E-enriched feed than lambs not deficient in vitamin E. Fifty-six Dohne Merino lambs were divided into two groups and fed either a vitamin E-deficient diet over 40 days to induce low plasma vitamin E or a vitamin E-enriched diet to induce high plasma vitamin E. The lambs were then offered a choice of vitamin E-enriched and vitamin E-deficient pellets. For half of the animals, the enriched diet was paired with strawberry flavour and the deficient diet was paired with orange flavour, while the reverse pairings were offered to the others. Lamb preference for the diets was measured daily for the following 15 days. There was a three-way interaction between the high and low vitamin E treatment groups×vitamin E content and type of flavour in the feed×time (days). The lambs preferred pellets flavoured with strawberry but this preference changed to orange flavour in vitamin E-deficient lambs if the orange flavour was paired with high vitamin E. Lambs without a deficiency continued to prefer strawberry-flavoured pellets, regardless of the vitamin E concentrations in the pellets. It is possible that self-learning contributed to the low vitamin E group of lambs changing preference to orange flavour in order to consume more vitamin E, presumably to remediate the deficiency.  相似文献   

20.
Vitamin E regulates mitochondrial hydrogen peroxide generation.   总被引:11,自引:0,他引:11  
The mitochondrial electron transport system consumes more than 85% of all oxygen used by the cells, and up to 5% of the oxygen consumed by mitochondria is converted to superoxide, hydrogen peroxide, and other reactive oxygen species (ROS) under normal physiologic conditions. Disruption of mitochondrial ultrastructure is one of the earliest pathologic events during vitamin E depletion. The present studies were undertaken to test whether a direct link exists between vitamin E and the production of hydrogen peroxide in the mitochondria. In the first experiment, mice were fed a vitamin E-deficient or-sufficient diet for 15 weeks, after which the mitochondria from liver and skeletal muscle were isolated to determine the rates of hydrogen peroxide production. Deprivation of vitamin E resulted in an approximately 5-fold increase of mitochondrial hydrogen peroxide production in skeletal muscle and a 1-fold increase in liver when compared with the vitamin E-supplemented group. To determine whether vitamin E can dose-dependently influence the production of hydrogen peroxide, four groups of male and female rats were fed diets containing 0, 20, 200, or 2000 lU/kg vitamin E for 90 d. Results showed that dietary vitamin E dose-dependently attenuated hydrogen peroxide production in mitochondria isolated from liver and skeletal muscle of male and female rats. Female rats, however, were more profoundly affected by dietary vitamin E than male rats in the suppression of mitochondrial hydrogen peroxide production in both organs studied. These results showed that vitamin E can directly regulate hydrogen peroxide production in mitochondria and suggest that the overproduction of mitochondrial ROS is the first event leading to the tissue damage observed in vitamin E-deficiency syndromes. Data further suggested that by regulating mitochondrial production of ROS, vitamin E modulates the expression and activation of signal transduction pathways and other redox-sensitive biologic modifiers, and thereby delays or prevents degenerative tissue changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号