首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic relationships of 24 phenotypically different strains isolated from sorghum beer in West Africa and the type cultures of the Saccharomyces sensu stricto species were investigated by universally primed polymerase chain reaction (PCR) analysis, microsatellite fingerprinting and PCR-restriction fragment length polymorphism (RFLP) of the ribosomal internal transcribed spacers. The results demonstrate that internal transcribed spacer (ITS) PCR-RFLP analysis with the endonucleases HaeIII, HpaII, ScrFI and TaqI is useful for discriminating S. cerevisiae, S. kudriavzevii, S. mikatae from one another and from the S. bayanus/S. pastorianus and S. cariocanus/S. paradoxus pairs. The sorghum beer strains exhibited the same restriction patterns as the type culture of S. cerevisiae CBS 1171. PCR profiles generated with the microsatellite primer (GTG)(5) and the universal primer N21 were almost identical for all isolates and strain CBS 1171. Despite phenotypic peculiarities, the strains involved in sorghum beer production in Ghana and Burkina Faso belong to S. cerevisiae. However, based on sequencing of the rDNA ITS1 region and Southern hybridisation analysis, these strains represent a divergent population of S. cerevisiae.  相似文献   

2.
A quick molecular biology method based on the polymerase chain reaction (PCR) and Denaturing Gradient Gel Electrophoresis (DGGE) was developed for distinguishing strains belonging to the Saccharomyces sensu stricto group. Differentiation was obtained between S. cerevisiae, S. paradoxus and S. bayanus / S. pastorianus although no distinction was possible between S. bayanus and S. pastorianus using the amplification of the ITS regions. The ability to distinguish between different strains of the Saccharomyces sensu stricto group could allow for a better understanding of the ecology of these species on grapes as well as in musts and wines and the method developed can be useful for the quick identification of Saccharomyces sensu stricto strains from numerous isolates.  相似文献   

3.
The SED1 gene is characterised by abundant length and sequence polymorphisms within the species Saccharomyces cerevisiae, due to the expansion and contraction of minisatellite-like sequences located within the ORF. A survey of the SED1 ORFs of 26 yeasts ascribed to the species S. cerevisiae, S. bayanus, S. pastorianus, S. paradoxus, S. cariocanus, S. kudriavzevii and S. mikatae revealed SED1 gene length and sequence variations between the species of the genus. Moreover, results obtained by Neighbour-Joining analysis of a dataset comprising the partial predicted amino acid sequences of SED1 ORFs agreed with the phylogenetic relationships of the seven species. Thus, the SED1 gene may represent a further molecular target for the identification of Saccharomyces isolates.  相似文献   

4.
To infer the molecular evolution of polymeric beta-fructosidase SUC genes of the yeast Saccharomyces, we have cloned and sequenced a new SUC gene from S. cariocanus and determined the sequence similarity of beta-fructosidases within the genus Saccharomyces. The proteins of Saccharomyces cerevisiae and its five sibling species (S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus) have high degree of identity - 90-97%. The invertase of S. bayanus is the most divergent among the proteins studied. The data obtained indicated that the yeast invertases are highly conservative. In the coding regions of the SUC genes the pyrimidine transitions were the most abundant event due to silent changes mainly in the third codon position. There is only one, probably, non-telomeric SUC gene in each of the Saccharomyces species. In S. cerevisiae, S. bayanus, S. kudriavzevii, S. mikatae and S. paradoxus the SUC gene have been mapped on chromosome IX, whereas in S. cariocanus this gene is located in chromosone XV, in the position of translocation.  相似文献   

5.
Abstract Murine monoclonal antibodies (mAbs) were selected against a cell wall glycoprotein of Saccharomyces cerevisiae . One of the mAbs (92-276/018) specifically identified S. cerevisiae and the sibling species S. paradoxus, S. pastorianus and S. bayanus in immunofluorescence studies and immunoblot analyses, while no other yeast genera except Saccharomyces were recognized. Further analysis indicated that the mAb 92-276/018 reacts with an epitope in the carbohydrate chain of the cell wall glycoproteins.  相似文献   

6.
Although sake yeasts are placed in Saccharomyces cerevisiae, we have been interested in their difference from the other subgroups of the species, and examined their proteins. When SDS-PAGE patterns of their soluble proteins were compared, specific differences between subgroups were found in their 36,000 Da regions. Proteins isolated therefrom were found to be subunits of three isomers of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from their N-terminal amino acid sequences and identified with anti-GAPDH serum. Therefore, comparison of zymogram was carried out by a modified method: denatured monomers were observed and the enzyme activity of their oligomers was not considered. SDS-PAGE patterns of all the sake yeasts differed from those of the other strains of S. cerevisiae. Strains of Saccharomyces bayanus showed uniform patterns which are different from the above two groups. Saccharomyces pastorianus strains resembled S. bayanus and were partly similar to S. cerevisiae in their patterns, in agreement with the hypothesis that S. pastorianus is a hybrid between these two species. Patterns of S. paradoxus appeared to be rather similar to those of sake yeasts. Results on the other species of the genus and on the preliminary experiments on PAGE of native isozymes are also described.  相似文献   

7.
The present study uses a mathematical-empirical approach to estimate the cardinal growth temperature parameters (T(min), the temperature below which growth is no longer observed; T(opt), the temperature at which the μ(max) equals its optimal value; μ(opt), the optimal value of μ(max); and T(max), the temperature above which no growth occurs) of 27 yeast strains belonging to different Saccharomyces and non-Saccharomyces species. S. cerevisiae was the yeast best adapted to grow at high temperatures within the Saccharomyces genus, with the highest optimum (32.3°C) and maximum (45.4°C) growth temperatures. On the other hand, S. kudriavzevii and S. bayanus var. uvarum showed the lowest optimum (23.6 and 26.2°C) and maximum (36.8 and 38.4°C) growth temperatures, respectively, confirming that both species are more psychrophilic than S. cerevisiae. The remaining Saccharomyces species (S. paradoxus, S. mikatae, S. arboricolus, and S. cariocanus) showed intermediate responses. With respect to the minimum temperature which supported growth, this parameter ranged from 1.3 (S. cariocanus) to 4.3°C (S. kudriavzevii). We also tested whether these physiological traits were correlated with the phylogeny, which was accomplished by means of a statistical orthogram method. The analysis suggested that the most important shift in the adaptation to grow at higher temperatures occurred in the Saccharomyces genus after the divergence of the S. arboricolus, S. mikatae, S. cariocanus, S. paradoxus, and S. cerevisiae lineages from the S. kudriavzevii and S. bayanus var. uvarum lineages. Finally, our mathematical models suggest that temperature may also play an important role in the imposition of S. cerevisiae versus non-Saccharomyces species during wine fermentation.  相似文献   

8.
Despite the beneficial role of Saccharomyces cerevisiae in the food industry for food and beverage production, it is able to cause spoilage in wines. We have developed a real-time PCR method to directly detect and quantify this yeast species in wine samples to provide winemakers with a rapid and sensitive method to detect and prevent wine spoilage. Specific primers were designed for S. cerevisiae using the sequence information obtained from a cloned random amplified polymorphic DNA band that differentiated S. cerevisiae from its sibling species Saccharomyces bayanus, Saccharomyces pastorianus, and Saccharomyces paradoxus. The specificity of the primers was demonstrated for typical wine spoilage yeast species. The method was useful for estimating the level of S. cerevisiae directly in sweet wines and red wines without preenrichment when yeast is present in concentrations as low as 3.8 and 5 CFU per ml. This detection limit is in the same order as that obtained from glucose-peptone-yeast growth medium (GPY). Moreover, it was possible to quantify S. cerevisiae in artificially contaminated samples accurately. Limits for accurate quantification in wine were established, from 3.8 x 10(5) to 3.8 CFU/ml in sweet wine and from 5 x 10(6) to 50 CFU/ml in red wine.  相似文献   

9.
To infer the molecular evolution of yeast Saccharomyces sensu stricto from analysis of the alpha-galactosidase MEL gene family, two new genes were cloned and sequenced from S. bayanus var. bayanus and S. pastorianus. Nucleotide sequence homology of the MEL genes of S. bayanus var. bayanus (MELb), S. pastorianus (MELpt), S. bayanus var. uvarum (MELu), and S. carlsbergensis (MELx) was rather high (94.1-99.3%), comparable with interspecific homology (94.8-100%) of S. cerevisiae MEL1-MEL11. Homology of the MEL genes of sibling species S. cerevisiae (MEL1), S. bayanus (MELb), S. paradoxus (MELp), and S. mikatae (MELj) was 76.2-81.7%, suggesting certain species specificity. On this evidence, the alpha-galactosidase gene of hybrid yeast S. pastorianus (S. carlsbergensis) was assumed to originate from S. bayanus rather than from S. cerevisiae.  相似文献   

10.
Variability of HXT2 at the protein and gene level was investigated among Saccharomyces sensu stricto and other yeast species. Results showed that the HXT2 gene is probably present in yeast genera other than Saccharomyces, suggesting that this gene is widely distributed in the yeast world. Chromosomal analyses indicated the stable location of HXT2 on the same chromosome and with the same copy number throughout the entire sensu stricto group. Results of the immunoblotting assay demonstrated that all strains tested (with the exception of S. cerevisiae DBVPG 6042) exhibited a lower level of Hxt2p expression than that shown by laboratory wild-type. Moreover, Hxt2p expression seems to reinforce the taxonomical differences between the two pairs of species (S. cerevisiae and S. paradoxus vs. S. pastorianus and S. bayanus) within the sensu stricto group of the genus of Saccharomyces that also reflect their different ecological niche.  相似文献   

11.
Abstract Using affinity-purified rabbit polyclonal antibodies against an extracellular mannoprotein (gp400) of Saccharomyces cerevisiae , the presence of immunohomologic proteins with similar electrophoretic mobility was shown in the culture medium of S. bayanus, S. paradoxus and S. pastorianus . Cross-reactive bands with different electrophoretic behaviour were observed for S. dairensis, S. exiguus, S. kluyveri, S. unisporus and also for the species moved from Sacchromyces to Arxiozyma, Kluyveromyces, Pachytichospora, Torulaspora and Zygosaccharomyces , in contrast to ascosporous yeasts of other genera in which these proteins were not found.  相似文献   

12.
The aim of the present study was to design species-specific primers capable of distinguishing between Saccharomyces cerevisiae, Saccharomyces bayanus/Saccharomyces pastorianus. The 5'-specific primers were designed from the ITS-1 region (between positions 150 and 182 from the 3'-SSU end) and the 3'-specific primers were located in the LSU gene (positions 560-590 from the 5'-end of this gene). These primers were tested with different collections and wild strains of these species and the results showed that the primers were capable of distinguishing between S. cerevisiae strains and S. bayanus/S. pastorianus. Not enough sequence differences were found between S. bayanus and S. pastorianus to design specific primers for these species using this region. This method offers an effective tool for a quick differentiation of the Saccharomyces strains of the most common species involved in industrial processes.  相似文献   

13.
We report the isolation of multiple strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a natural woodland site in southeastern Pennsylvania, USA, using enrichment culturing in a medium containing 7.6% (v/v) ethanol. The method was applied to bark and flux material collected from broad-leaved trees (mostly Quercus spp.) and to associated soils. Many candidate wild strains of Saccharomyces were isolated using this method, most of them from soils associated with oaks. Matings to genetically marked tester strains of S. cerevisiae and S. paradoxus identified roughly equal numbers of these two species within this collection. The S. paradoxus isolates showed significant partial reproductive isolation from a conspecific European strain, whereas the S. cerevisiae isolates did not. Variability in both chromosome size and Ty1 element hybridization profiles was observed within both populations at this site. We discuss the relevance of our data to current debates concerning whether S. cerevisiae is a wild species or a domesticated species.  相似文献   

14.
AIMS: To develop a multiplex PCR assay for the specific identification and differentiation of Saccharomyces cerevisiae, S. bayanus and their hybrids. METHODS AND RESULTS: Two sets of primers with sequences complementary to the region YBR033w were used. A single amplicon of 1710 bp or 329 bp was obtained with species S. cerevisiae and S. bayanus, respectively, while the presence of both bands was observed in S. pastorianus because of its hybrid nature. Both amplification products were also obtained after amplification from DNA of several laboratory S. cerevisiae x S. bayanus hybrid strains. CONCLUSIONS: Multiplex PCR was optimized for the rapid and reliable identification of S. cerevisiae, S. bayanus and their hybrids. SIGNIFICANCE AND IMPACT OF THE STUDY: The procedure may be used for routine detection of the most common Saccharomyces sensu stricto yeasts involved in industrial fermentation processes, overcoming the problems of conventional techniques.  相似文献   

15.
Karyotyping of Saccharomyces strains with different temperature profiles   总被引:2,自引:1,他引:1  
This study examined the karyotype, the fermentation performance and the optimum growth temperature (Topt) of 28 yeast strains all identified as species belonging to Saccharomyces sensu stricto . The strains were isolated from fermented musts, which had not been inoculated, at two temperature ranges: 20–40 °C and approximately 0–6 °C. The results demonstrated a correlation between the Topt and the chromosome organization. In particular, strains with Topt of less than 30 °C showed only two bands in the region between 365 and 225 kb, while those with a Topt greater than 30 °C had three bands in this size range. From a taxonomic viewpoint, the Topt is a better indicator for the Saccharomyces sp. than the ceiling temperature of 37 °C currently used to differentiate cryotolerant Saccharomyces bayanus and S. pastorianus from non-cryotolerant S. cerevisiae and S. paradoxus strains.  相似文献   

16.
Abstract Several yeast strains of the species Saccharomyces cerevisiae, S. bayanus and S. paradoxus , first identified by hybridization experiments and measurements of DNA/DNA homology, were characterized using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis of the MET2 gene. There was no exception to the agreement between this method and classical genetic analyses for any of the strains examined, so PCR/RFLP of the MET2 gene is a reliable and fast technique for delimiting S. cerevisiae and S. bayanus . Enological strains classified as S., bayanus , S. chevalieri , and S. capensis gave S. cerevisiae restriction patterns, whereas most S. uvarum strains belong to S. bayanus . Enologists should no longer use the name of S. bayanus for S. cerevisiae Gal strains, and should consider S. bayanus as a distinct species.  相似文献   

17.
Optimal interactions among nuclear and mitochondria-coded proteins are required to assemble functional complexes of mitochondrial oxidative phosphorylation. The communication between the nuclear and mitochondrial genomes has been studied by transplacement of mitochondria from related species into mutants devoid of mitochondrial DNA (rho0). Recently we have reported that the mitochondria transferred from Saccharomyces paradoxus restored partially the respiration in Saccharomyces cerevisiae rho0 mutants. Here we present evidence that the S. cerevisiae mitochondria completely salvage from respiration deficiency, not only in conspecific isolates but also in S. paradoxus. The respiratory capacity in less-related species can be recovered exclusively in the presence of S. cerevisiae chromosomes. The efficiency of the re-established oxidative phosphorylation did not rely on the presence of introns in the S. cerevisiae mitochondrial DNA. Our results suggest that, apart from evolutionary distance, the direction of mitochondrial replacement could play a significant role in installing the complete (wild-type-like) interaction between mitochondria and nuclei from different species.  相似文献   

18.
Saccharomyces cerevisiae and its close congener S. paradoxus are typically indistinguishable by the phenotypic criteria of classical yeast taxonomy, but they are evolutionarily distinct as indicated by hybrid spore inviability and genomic sequence divergence. Previous work has shown that these two species coexist in oak-associated microhabitats at natural woodland sites in North America. Here, we show that sympatric populations of S. cerevisiae and S. paradoxus from a single natural site are phenotypically differentiated in their growth rate responses to temperature. Our main finding is that the S. cerevisiae population exhibits a markedly higher growth rate at 37 degrees C than the S. paradoxus population; we also find possible differences in growth rate between these populations at two lower temperatures. We discuss the implications of our results for the coexistence of these yeasts in natural environments, and we suggest that thermal growth response may be an evolutionarily labile feature of these organisms that could be analyzed using genomic approaches.  相似文献   

19.
A multispecies-based taxonomic microarray targeting coding sequences of diverged orthologous genes in Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae, Saccharomyces bayanus, Saccharomyces kudriavzevii, Naumovia castellii, Lachancea kluyveri and Candida glabrata was designed to allow identification of isolates of these species and their interspecies hybrids. Analysis of isolates of several Saccharomyces species and interspecies hybrids demonstrated the ability of the microarray to differentiate these yeasts on the basis of their specific hybridization patterns. Subsequent analysis of 183 supposed S. cerevisiae isolates of various ecological and geographical backgrounds revealed one misclassified S. bayanus or Saccharomyces uvarum isolate and four aneuploid interspecies hybrids, one between S. cerevisiae and S. bayanus and three between S. cerevisiae and S. kudriavzevii . Furthermore, this microarray design allowed the detection of multiple introgressed S. paradoxus DNA fragments in the genomes of three different S. cerevisiae isolates. These results show the power of multispecies-based microarrays as taxonomic tools for the identification of species and interspecies hybrids, and their ability to provide a more detailed characterization of interspecies hybrids and recombinants.  相似文献   

20.
Saccharomyces bayanus is a yeast species described as one of the two parents of the hybrid brewing yeast S. pastorianus. Strains CBS380(T) and NBRC1948 have been retained successively as pure-line representatives of S. bayanus. In the present study, sequence analyses confirmed and upgraded our previous finding: S. bayanus type strain CBS380(T) harbours a mosaic genome. The genome of strain NBRC1948 was also revealed to be mosaic. Both genomes were characterized by amplification and sequencing of different markers, including genes involved in maltotriose utilization or genes detected by array-CGH mapping. Sequence comparisons with public Saccharomyces spp. nucleotide sequences revealed that the CBS380(T) and NBRC1948 genomes are composed of: a predominant non-cerevisiae genetic background belonging to S. uvarum, a second unidentified species provisionally named S. lagerae, and several introgressed S. cerevisiae fragments. The largest cerevisiae-introgressed DNA common to both genomes totals 70kb in length and is distributed in three contigs, cA, cB and cC. These vary in terms of length and presence of MAL31 or MTY1 (maltotriose-transporter gene). In NBRC1948, two additional cerevisiae-contigs, cD and cE, totaling 12kb in length, as well as several smaller cerevisiae fragments were identified. All of these contigs were partially detected in the genomes of S. pastorianus lager strains CBS1503 (S. monacensis) and CBS1513 (S. carlsbergensis) explaining the noticeable common ability of S. bayanus and S. pastorianus to metabolize maltotriose. NBRC1948 was shown to be inter-fertile with S. uvarum CBS7001. The cross involving these two strains produced F1 segregants resembling the strains CBS380(T) or NRRLY-1551. This demonstrates that these S. bayanus strains were the offspring of a cross between S. uvarum and a strain similar to NBRC1948. Phylogenies established with selected cerevisiae and non-cerevisiae genes allowed us to decipher the complex hybridisation events linking S. lagerae/S. uvarum/S. cerevisiae with their hybrid species, S. bayanus/pastorianus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号