首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A new look at the evolution of avian sex chromosomes   总被引:1,自引:0,他引:1  
Birds have a ubiquitous, female heterogametic, ZW sex chromosome system. The current model suggests that the Z chromosome and its degraded partner, the W chromosome, evolved from an ancestral pair of autosomes independently from the mammalian XY male heteromorphic sex chromosomes--which are similar in size, but not gene content (Graves, 1995; Fridolfsson et al., 1998). Furthermore the degradation of the W has been proposed to be progressive, with the basal clade of birds (the ratites) possessing virtually homomorphic sex chromosomes and the more recently derived birds (the carinates) possessing highly heteromorphic sex chromosomes (Ohno, 1967; Solari, 1993). Recent findings have suggested an alternative to independent evolution of bird and mammal chromosomes, in which an XY system took over directly from an ancestral ZW system. Here we examine recent research into avian sex chromosomes and offer alternative suggestions as to their evolution.  相似文献   

2.
Sex determination in vertebrates is accomplished through a highly conserved genetic pathway. But surprisingly, the downstream events may be activated by a variety of triggers, including sex determining genes and environmental cues. Amongst species with genetic sex determination, the sex determining gene is anything but conserved, and the chromosomes that bear this master switch subscribe to special rules of evolution and function. In mammals, with a few notable exceptions, female are homogametic (XX) and males have a single X and a small, heterochromatic and gene poor Y that bears a male dominant sex determining gene SRY. The bird sex chromosome system is the converse in that females are the heterogametic sex (ZW) and males the homogametic sex (ZZ). There is no SRY in birds, and the dosage-sensitive Z-borne DMRT1 gene is a credible candidate sex determining gene. Different sex determining switches seem therefore to have evolved independently in different lineages, although the complex sex chromosomes of the platypus offer us tantalizing clues that the mammal XY system may have evolved directly from an ancient reptile ZW system. In this review we will discuss the organization and evolution of the sex chromosomes across a broad range of mammals, and speculate on how the Y chromosome, and SRY, evolved.  相似文献   

3.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   

4.
Sex chromosomes can differ between species as a result of evolutionary turnover, a process that can be driven by evolution of the sex determination pathway. Canonical models of sex chromosome turnover hypothesize that a new master sex determining gene causes an autosome to become a sex chromosome or an XY chromosome pair to switch to a ZW pair (or vice versa). Here, a novel paradigm for the evolution of sex determination and sex chromosomes is presented, in which there is an evolutionary transition in the master sex determiner, but the X chromosome remains unchanged. There are three documented examples of the novel paradigm, and it is hypothesized that a similar process could happen in a ZW sex chromosome system. Three other taxa are also identified where the novel paradigm may have occurred, and how it could be distinguished from canonical trajectories in these and additional taxa is also described.  相似文献   

5.
6.
Snakes are historically important in the formulation of several central concepts on the evolution of sex chromosomes. For over 50 years, it was believed that all snakes shared the same ZZ/ZW sex chromosomes, which are homomorphic and poorly differentiated in “basal” snakes such as pythons and boas, while heteromorphic and well differentiated in “advanced” (caenophidian) snakes. Recent molecular studies revealed that differentiated sex chromosomes are indeed shared among all families of caenophidian snakes, but that boas and pythons evolved likely independently male heterogamety (XX/XY sex chromosomes). The historical report of heteromorphic ZZ/ZW sex chromosomes in a boid snake was previously regarded as ambiguous. In the current study, we document heteromorphic ZZ/ZW sex chromosomes in a boid snake. A comparative approach suggests that these heteromorphic sex chromosomes evolved very recently and that they are poorly differentiated at the sequence level. Interestingly, two snake lineages with confirmed male heterogamety possess homomorphic sex chromosomes, but heteromorphic sex chromosomes are present in both snake lineages with female heterogamety. We point out that this phenomenon is more common across squamates. The presence of female heterogamety in non‐caenophidian snakes indicates that the evolution of sex chromosomes in this lineage is much more complex than previously thought, making snakes an even better model system for the evolution of sex chromosomes.  相似文献   

7.
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.  相似文献   

8.
In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome.  相似文献   

9.
The wolf fish Hoplias malabaricus includes well differentiated sex systems (XY and X1X2Y in karyomorphs B and D, respectively), a nascent XY pair (karyomorph C) and not recognized sex chromosomes (karyomorph A). We performed the evolutionary analysis of these sex chromosomes, using two X chromosome-specific probes derived by microdissection from the XY and X1X2Y sex systems. A putative-sex pair in karyomorph A was identified, from which the differentiated XY system was evolved, as well as the clearly evolutionary relationship between the nascent XY system and the origin of the multiple X1X2Y chromosomes. The lack of recognizable signals on the sex chromosomes after the reciprocal cross-FISH experiments highlighted that they evolved independently from non-homologous autosomal pairs. It is noteworthy that these distinct pathways occur inside the same nominal species, thus exposing the high plasticity of sex chromosome evolution in lower vertebrates. Possible mechanisms underlying this sex determination liability are also discussed.  相似文献   

10.
李书粉  李莎  邓传良  卢龙斗  高武军 《遗传》2015,37(2):157-164
XY性染色体决定系统是决定植物性别的主要方式,但是对于其起源与演化机制却知之甚少。目前认为,携带控制雌蕊或雄蕊发育基因的一对常染色体由于某种未知原因的突变形成早期的neo-Y或neo-X性染色体,随着演化的进行,早期XY性染色体之间的重组逐渐受到抑制,非重组区域扩展最终形成异型的性染色体。研究发现,重复序列的累积以及DNA甲基化等因素都可能参与了XY性染色体的异染色质化、重组抑制及Y染色体体积增大过程。转座子作为一种基因组中含量最高的重复序列在性染色体演化中扮演了重要的角色,包括性染色体演化的起始激发,以及导致性染色体局部表观遗传修饰使其发生异染色质化扩展和重组抑制。文章综述了转座子在植物性染色体上的累积及其与性染色体异染色质化之间的关系,并简要分析了转座子在性染色体演化过程中的作用。  相似文献   

11.

The African cichlid radiations have created thousands of new cichlid species with a wide diversity of trophic morphologies, behaviors, sensory systems, and pigment patterns. In addition, recent research has uncovered a surprising number of young sex chromosome systems within African cichlids. Here, we refine methods to describe the differentiation of young sex chromosomes from whole genome comparisons. We identified a novel XY sex chromosome system on linkage group 14 in Oreochromis mossambicus, confirmed a linkage group 1 XY system in Coptodon zillii, and also defined the limits of our methodology by examining a ZW system on linkage group 3 in Pelmatolapia mariae. These data further demonstrate that cichlids are an excellent model system for understanding the early stages of sex chromosome evolution.

  相似文献   

12.
Most turtle species possess temperature-dependent sex determination (TSD), but genotypic sex determination (GSD) has evolved multiple times independently from the TSD ancestral condition. GSD in animals typically involves sex chromosomes, yet the sex chromosome system of only 9 out of 18 known GSD turtles has been characterized. Here, we combine comparative genome hybridization (CGH) and BAC clone fluorescent in situ hybridization (BAC FISH) to identify a macro-chromosome XX/XY system in the GSD wood turtle Glyptemys insculpta (GIN), the youngest known sex chromosomes in chelonians (8–20 My old). Comparative analyses show that GIN-X/Y is homologous to chromosome 4 of Chrysemys picta (CPI) painted turtles, chromosome 5 of Gallus gallus chicken, and thus to the X/Y sex chromosomes of Siebenrockiella crassicollis black marsh turtles. We tentatively assign the gene content of the mapped BACs from CPI chromosome 4 (CPI-4) to GIN-X/Y. Chromosomal rearrangements were detected in G. insculpta sex chromosome pair that co-localize with the male-specific region of GIN-Y and encompass a gene involved in sexual development (Wt1—a putative master gene in TSD turtles). Such inversions may have mediated the divergence of G. insculpta sex chromosome pair and facilitated GSD evolution in this turtle. Our results illuminate the structure, origin, and evolution of sex chromosomes in G. insculpta and reveal the first case of convergent co-option of an autosomal pair as sex chromosomes within chelonians.  相似文献   

13.
Recent progress of chicken genome projects has revealed that bird ZW and mammalian XY sex chromosomes were derived from different autosomal pairs of the common ancestor; however, the evolutionary relationship between bird and reptilian sex chromosomes is still unclear. The Chinese soft-shelled turtle (Pelodiscus sinensis) exhibits genetic sex determination, but no distinguishable (heteromorphic) sex chromosomes have been identified. In order to investigate this further, we performed molecular cytogenetic analyses of this species, and thereby identified ZZ/ZW-type micro-sex chromosomes. In addition, we cloned reptile homologues of chicken Z-linked genes from three reptilian species, the Chinese soft-shelled turtle and the Japanese four-striped rat snake (Elaphe quadrivirgata), which have heteromorphic sex chromosomes, and the Siam crocodile (Crocodylus siamensis), which exhibits temperature-dependent sex determination and lacks sex chromosomes. We then mapped them to chromosomes of each species using FISH. The linkage of the genes has been highly conserved in all species: the chicken Z chromosome corresponded to the turtle chromosome 6q, snake chromosome 2p and crocodile chromosome 3. The order of the genes was identical among the three species. The absence of homology between the bird Z chromosome and the snake and turtle Z sex chromosomes suggests that the origin of the sex chromosomes and the causative genes of sex determination are different between birds and reptiles.  相似文献   

14.
A DM-domain gene on the Y chromosome was identified as the sex-determining gene in the medaka, Oryzias latipes, and named DMY (also known as dmrt1bY). However, this gene is absent in most Oryzias fishes, suggesting that closely related species have another sex-determining gene. In fact, it has been demonstrated that the Y chromosome in O. dancena is not homologous to that in O. latipes, whereas both species have an XX/XY sex-determination system. Through a progeny test of sex-reversed fish and a linkage analysis of isolated sex-linked DNA markers, we show that O. hubbsi, which is one of the most closely related species to O. dancena, has a ZZ/ZW system. In addition, genetic and fluorescence in situ hybridization mapping of the sex-linked markers revealed that sex chromosomes in O. hubbsi and O. dancena are not homologous, indicating different origins of these ZW and XY sex chromosomes. Furthermore, we found that O. hubbsi has morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamidino-2-phenylindole (DAPI)-positive heterochromatin blocks and is larger than the Z chromosome, although such differentiated sex chromosomes have not been observed in other Oryzias species. These findings suggest that a variety of sex-determining mechanisms and sex chromosomes have evolved in Oryzias.  相似文献   

15.
N F Parnell  J T Streelman 《Heredity》2013,110(3):239-246
Sex-determining systems may evolve rapidly and contribute to lineage diversification. In fact, recent work has suggested an integral role of sex chromosome evolution in models of speciation. We use quantitative trait loci analysis of restriction site-associated DNA -tag single nucleotide polymorphisms to identify multiple loci responsible for sex determination and reproductively adaptive color phenotypes in Lake Malawi cichlids. We detect a complex epistatic sex system consisting of a major female heterogametic ZW locus on chromosome 5, two separate male heterogametic XY loci on chromosome 7, and two additional interacting loci on chromosomes 3 and 20. Our data support the known chromosomal linkage between orange blotch color and ZW, as well as novel genetic associations between male blue nuptial color and two sex determining regions (an XY and ZW locus). These results provide further empirical evidence for a complex antagonistic sex–color system in this species flock and suggest a possible role for, and effect of, polygenic sex-determining systems in rapid evolutionary diversification.  相似文献   

16.
During the evolution, sex determination occurred early. Sex determining factors were progressively isolated from other genes in sexual chromosomes, or gonosomes. Among vertebrates, evolution took two opposite pathways : in mammals, the system of XX:XY sex determination, with Y chromosome, induces male differentiation. In contrast, in birds, the system ZZ:ZW, with the W chromosome, induces female differentiation. But comparative studies show that the two pathways are not so simple. In the chicken as in the lower vertebrates, estrogens play a central role in gonadal sex differentiation. Several genes, show to be critical for mammalian determination, are also expressed in the chicken but their expression pattern differs, indicating functional plasticity. The W-linked female determinants remains still unknown. But comparative studies of the two pathways, with conserved and divergent elements, are broadening our understanding of sex determination.  相似文献   

17.
18.
Much of our current state of knowledge concerning sex chromosome evolution is based on a handful of ‘exceptional’ taxa with heteromorphic sex chromosomes. However, classifying the sex chromosome systems of additional species lacking easily identifiable, heteromorphic sex chromosomes is indispensable if we wish to fully understand the genesis, degeneration and turnover of vertebrate sex chromosomes. Squamate reptiles (lizards and snakes) are a potential model clade for studying sex chromosome evolution as they exhibit a suite of sex‐determining modes yet most species lack heteromorphic sex chromosomes. Only three (of 203) chameleon species have identified sex chromosome systems (all with female heterogamety, ZZ/ZW). This study uses a recently developed method to identify sex‐specific genetic markers from restriction site‐associated DNA sequence (RADseq) data, which enables the identification of sex chromosome systems in species lacking heteromorphic sex chromosomes. We used RADseq and subsequent PCR validation to identify an XX/XY sex chromosome system in the veiled chameleon (Chamaeleo calyptratus), revealing a novel transition in sex chromosome systems within the Chamaeleonidae. The sex‐specific genetic markers identified here will be essential in research focused on sex‐specific, comparative, functional and developmental evolutionary questions, further promoting C. calyptratus’ utility as an emerging model organism.  相似文献   

19.
The evolution of a pair of chromosomes that differ in appearance between males and females (heteromorphic sex chromosomes) has occurred repeatedly across plants and animals. Recent work has shown that the male heterogametic (XY) and female heterogametic (ZW) sex chromosomes evolved independently from different pairs of homomorphic autosomes in the common ancestor of birds and mammals but also that X and Z chromosomes share many convergent molecular features. However, little is known about how often heteromorphic sex chromosomes have either evolved convergently from different autosomes or in parallel from the same pair of autosomes and how universal patterns of molecular evolution on sex chromosomes really are. Among winged insects with sequenced genomes, there are male heterogametic species in both the Diptera (e.g., Drosophila melanogaster) and the Coleoptera (Tribolium castaneum), female heterogametic species in the Lepidoptera (Bombyx mori), and haplodiploid species in the Hymenoptera (e.g., Nasonia vitripennis). By determining orthologous relationships among genes on the X and Z chromosomes of insects with sequenced genomes, we are able to show that these chromosomes are not homologous to one another but are homologous to autosomes in each of the other species. These results strongly imply that heteromorphic sex chromosomes have evolved independently from different pairs of ancestral chromosomes in each of the insect orders studied. We also find that the convergently evolved X chromosomes of Diptera and Coleoptera share genomic features with each other and with vertebrate X chromosomes, including excess gene movement from the X to the autosomes. However, other patterns of molecular evolution--such as increased codon bias, decreased gene density, and the paucity of male-biased genes on the X--differ among the insect X and Z chromosomes. Our results provide evidence for both differences and nearly universal similarities in patterns of evolution among independently derived sex chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号