首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of chlorophyll (Chl) and carotenoids (Car) of leaves and changes in Chl fluorescence emission and polarisation, malondialdehyde (MDA) accumulation, and 2,6-dichlorophenol indophenol (DCPIP) photoreduction in chloroplasts of wheat seedlings grown under different irradiance and subsequently exposed to high irradiance stress (HIS; 250 W m–2) were studied in mature and senescent primary wheat leaves. Faster rate of pigment loss was observed in leaves of moderate irradiance (MI; 15 W m–2) grown plants, compared to high irradiance (HI-1 and HI-2; 30 and 45 W m–2) ones when exposed to HIS. A relatively lower loss of Car in the plants grown in HI-1 and HI-2 exposed to HIS suggests HI adaptation of these seedlings. The slower rate of increase in the ratio of Chl fluorescence emission (F685/F735) also may suggest photoprotective strategy of HI grown seedlings. There was a positive correlation between MDA accumulation and Chl fluorescence polarisation. The DCPIP photoreduction activity in chloroplasts isolated from HI-1 and HI-2 grown plants exposed to HIS showed slower loss of electron transport activity compared to MI grown plants. These observations suggest that plants grown under higher irradiance have capacity to manage the excess quanta better than those grown under lower irradiance.  相似文献   

2.
The rate of accumulation of total chlorophyll (Chl) and carotenoids (Car) of leaves grown under high irradiance, HI (30 and 45 W m–2) was faster than at moderate irradiance, MI (15 W m–2). However, the senescence phase started earlier in the samples and proceeded at a faster rate. Chl a/b and Chl (a+b)/Car values showed faster loss of Chl a (compared to Chl b) and Chl (a+b) (compared to Car) in HI leaves. Protein accumulation and loss were also similar to that of Chl (a+b) content. Increase in Chl fluorescence during the development phase may suggest a gradual change in thylakoid organisation, however, the temporal kinetics were different in HI and MI samples. Increase in fluorescence polarisation during senescence of HI leaves compared to the control (MI) suggests conversion of thylakoid membranes to gel phase. Chloroplasts prepared from HI seedlings showed higher rate of photochemical activities, however, the activity declined earlier and at faster rate compared to the control.  相似文献   

3.
Long-term (30 d) effects of 100, 200, 300, and 400 mM NaCl on photosystem 2 (PS 2)-mediated electron transport activity and content of D1 protein in the thylakoid membranes of chrysanthemum (Dendranthema grandiflorum) cultured in vitro at low irradiance 20 μmol(photon) m−2 s−1 were investigated. 100 mM NaCl increased contents of chlorophylls (Chl) a and b, carotenoids (Car; xanthophylls + carotenes), and the ratio of Chl a/b, and Car/Chl a+b. However, further increase in NaCl concentration led to the significant reduction in the contents of Chl a, and Chl b, and increase in the ratio of Chl a/b and Car/Chl a+b. NaCl treatment decreased the PS 2-mediated electron transport activity and contents of various thylakoid membrane polypeptides including D1 protein.  相似文献   

4.
Kushwaha  S.  Bhowmik  P.C. 《Photosynthetica》2000,37(4):553-558
Isoxaflutole [5-cyclopropyl-4-(2-methylsulphonyl-4-trifluromethylbenzoyl)isoxazole] is a new preemergence herbicide for broad-spectrum weed control in maize. The effect of isoxaflutole on chlorophyll (Chl) and carotenoid (Car) biosynthesis was investigated in cucumber (Cucumis sativus L.) cotyledons. Etiolated tissue was incubated with 5 mM isoxaflutole for 24 h and irradiated (60 mol m-2 s-1). The irradiation for 3 h did not reduce Chl a, Chl b, and Car contents, but after a 28-h irradiation the contents of Chl a and Car decreased by 35 and 15 %, respectively, and the content of Chl b increased by 24 %. Increasing the concentration of isoxaflutole beyond 5 mM resulted in reduction of Chl a (71 %), Chl b (20 %), and Car (31 %) contents. Similarly, increase in irradiance from 60 to 180 mol m-2 s-1 resulted in larger reduction of Chl and Car contents. Exogenously supplied 5-aminolevulinic acid did not reverse the isoxaflutole-inhibited Chl synthesis, whereas an exogenously supplied homogentisic acid lactone reversed the inhibition of pigment synthesis due to isoxaflutole.  相似文献   

5.
The effect of acclimation to high irradiance stress (HIS, 250 Wm-2) in wheat leaves grown under three different irradiances was investigated by HPLC analyses of pigments, chlorophyll a fluorescence parameters and photochemical activities of chloroplasts. Significant loss of beta-carotene was observed compared to the xanthophylls in all three types of seedlings exposed to HIS. However, the effect of HIS on neoxanthin and lutein contents was not significant. The loss of partial electron transport (Asc-DCPIP to MV, PSI activity) was less than the whole chain (H2O to MV) and PS II activity (H2O to DCPIP) suggesting that PS I is less susceptible to HIS compared to PS II. The percent of reductions in Fv/Fm and phi PS II were less in plants grown under high irradiance (HI-1, 30 Wm-2 and HI-2, 45 Wm-2) compared to those grown under moderate irradiance (MI, 15 Wm-2). On the other hand, the percent of NPQ increased more in the leaves of HI plants compared to the leaves of MI when exposed to HIS which suggests a more efficient non-radiative dissipation of excess excitation energy in HI plants compared to MI. These observations suggest that plants grown under relatively high irradiance are better adapted to HIS condition.  相似文献   

6.
Kutík  J.  Holá  D.  Vičánková  A.  Šmídová  M.  Kočová  M.  Körnerová  M.  Kubínová  L. 《Photosynthetica》2001,39(4):497-506
Differences in ultrastructural parameters of mesophyll cell (MC) chloroplasts, contents of photosynthetic pigments, and photochemical activities of isolated MC chloroplasts were studied in the basal, middle, and apical part of mature or senescing leaf blade of two maize genotypes. A distinct heterogeneity of leaf blade was observed both for structural and functional characteristics of chloroplasts. In both mature and senescing leaves the shape of MC chloroplasts changed from flat one in basal part of leaf to nearly spherical one in leaf apex. The volume density of granal thylakoids decreased from leaf base to apex in both types of leaves examined, while the amount of intergranal thylakoids increased in mature leaves but decreased in senescing leaves. The most striking heterogeneity was found for the quantity of plastoglobuli, which strongly increased with the increasing distance from leaf base. The differences in chloroplast ultrastructure were accompanied by differences in other photosynthetic characteristics. The Hill reaction activity and activity of photosystem 1 of isolated MC chloroplasts decreased from leaf base to apex in mature leaves. Apical part of senescing leaf blade was characterised by low contents of chlorophyll (Chl) a and Chl b, whereas in mature leaves, the content of Chls as well as the content of total carotenoids (Car) slightly increased from basal to apical leaf part. This was reflected also in the ratio Chl (a+b)/total Car; the ratio of Chl a/b did not significantly differ between individual parts of leaf blade. Both genotypes examined differed in the character of developmental gradient observed along whole length of leaf blade.  相似文献   

7.
The combined effects of osmotic stress and light on the generation of singlet oxygen (102) and its relation to the breakdown of photosynthetic pigments in leaves of hybrid rice (Oryza sativa L. subsp, indica cv. Shanyou 63) seedlings were studied under the condition of incubating the leaves with –0.8 MPa polyethylene glycol (PEG) solution. Under osmotic stress and increasing light intensity, the production of ¹O2 monitored as p-nitrosodimethylaniline (NDA) bleaching were increased in chloroplasts, degradation of chloro- phyll (Chl) and carotenoid (Car) were accelerated and Car loss preceded Chl causing a significant increase of Chl/Car ratio. A close correlation was observed between ¹O2 production and the contents of Chl, Car and malondialdehyde (MDA). Pretreatment with scavengers for ¹O2. such as β-carotene (β-Car) and histidine (His) reduced MDA content and retarded the degradation of photosynthetic pigments in rice leaves exposed to osmotic stress of -0.8 MPa and light intensity of 250 μmol · m- 2 · s-1, in contrast to that with photosensitizer riboflavin (RF). These results indicate that ¹O2 which generated in chloroplast from photosensitized reactions involving triplet Chl may play a significant role in the breakdown of photo- synthetic pigments and the preferential destruction of Car in the leaves under combined osmotic stress with light.  相似文献   

8.
In crowns of chestnut trees the absorption of radiant energy is not homogeneous; leaves from the south (S) side are the most irradiated, but leaves from the east (E) and west (W) sides receive around 70 % and those from north (N) face less than 20 % of the S irradiation. Compared to the S leaves, those from the N side were 10 % smaller, their stomata density was 14 % smaller, and their laminae were 21 % thinner. N leaves had 0.63 g(Chl) m−2, corresponding to 93 % of total chlorophyll (Chl) amount in leaves of S side. The ratios of Chl a/b were 2.9 and 3.1 and of Chl/carotenoids (Car) 5.2 and 4.8, respectively, in N and S leaves. Net photosynthetic rate (P N) was 3.9 μmol(CO2) m−2 s−1 in S leaves, in the E, W, and N leaves 81, 77, and 38 % of that value, respectively. Morning time (10:00 h) was the period of highest P N in the whole crown, followed by 13:00 h (85 % of S) and 16:00 h with 59 %. Below 500 μmol m−2 s−1 of photosynthetic photon flux density (PPFD), N leaves produced the highest P N, while at higher PPFD, the S leaves were most active. In addition, the fruits from S side were 10 % larger than those from the N side.  相似文献   

9.
Two rice chlorophyll (Chl) b-less mutants (VG28-1, VG30-5) and the respective wild type (WT) plant (cv. Zhonghua No. 11) were analyzed for the changes in Chl fluorescence parameters, xanthophyll cycle pool, and its de-epoxidation state under exposure to strong irradiance, SI (1 700 μmol m−2 s−1). We also examined alterations in the chloroplast ultrastructure of the mutants induced by methyl viologen (MV) photooxidation. During HI (0–3.5 h), the photoinactivation of photosystem 2 (PS2) appeared earlier and more severely in Chl b-less mutants than in the WT. The decreases in maximal photochemical efficiency of PS2 in the dark (Fv/Fm), quantum efficiency of PS2 electron transport (ΦPS2), photochemical quenching (qP), as well as rate of photochemistry (Prate), and the increases in de-epoxidation state (DES) and rate of thermal dissipation of excitation energy (Drate) were significantly greater in Chl b-mutants compared with the WT plant. A relatively larger xanthophyll pool and 78–83 % conversion of violaxanthin into antheraxanthin and zeaxanthin in the mutants after 3.5 h of HI was accompanied with a high ratio of inactive/total PS2 (0.55–0.73) and high 1–qP (0.57–0.68) which showed that the activities of the xanthophyll cycle were probably insufficient to protect the photosynthetic apparatus against photoinhibition. No apparent difference of chloroplast ultrastructure was found between Chl b-less mutants and WT plants grown under low, LI (180 μmol m−2 s−1) and high, HI (700 μmol m−2 s−1) irradiance. However, swollen chloroplasts and slight dilation of thylakoids occurred in both mutants and the WT grown under LI followed by MV treatment. These typical symptoms of photooxidative damage were aggravated as plants were exposed to HI. Distorted and loose scattered thylakoids were observed in particular in the Chl b-less mutants. A greater extent of photoinhibition and photooxidation in these mutants indicated that the susceptibility to HI and oxidative stresses was enhanced in the photosynthetic apparatus without Chl b most likely as a consequence of a smaller antenna size.  相似文献   

10.
Karlický  V.  Podolinská  J.  Nadkanská  L.  Štroch  M.  Čajánek  M.  Špunda  V. 《Photosynthetica》2010,48(3):475-480
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.  相似文献   

11.
In this study we investigated the ability of Chara intermedia to acclimate to different irradiances (i.e. “low-light” (LL): 20–30 μmol photons m−2 s−1 and “high-light” (HL): 180–200 μmol photons m−2 s−1) and light qualities (white, yellow and green), using morphological, photosynthesis, chlorophyll fluorescence and pigment analysis.Relative growth rates increased with increasing irradiance from 0.016 ± 0.003 (LL) to 0.024 ± 0.005 (HL) g g−1 d−1 fresh weight and were independent of light quality. A growth-based branch orientation towards high-light functioning as a mechanism to protect the plant from excessive light was confirmed. It was shown that the receptor responsible for the morphological reaction is sensitive to blue-light.C. intermedia showed higher oxygen evolution (up to 10.5 (HL) vs. 4.5 (LL) nmol O2 mg Chl−1 s−1), photochemical and energy-dependent Chl fluorescence quenching and a lower Fv/Fm after acclimation to HL. With respect to qP, the acclimation of the photosynthetic apparatus depended on light quality and needed the blue part of the spectrum for full development. In addition, pigment composition was influenced by light and the Chl a/Car and Antheraxanthin (A) + Zeaxanthin (Z)/Violaxanthin (V) + A + Z (DES) ratios revealed the expected acclimation behaviour in favour of carotenoid protection under HL (i.e. decrease of Chl a/Car from 3.41 ± 0.48 to 2.30 ± 0.35 and increase of DES from 0.39 ± 0.05 to 0.87 ± 0.03), while the Chl a/Chl b ratios were not significantly affected. Furthermore it was shown that morphological light acclimation mechanisms influence the extent of the physiological modifications.  相似文献   

12.
Huang  Z.-A.  Jiang  D.-A.  Yang  Y.  Sun  J.-W.  Jin  S.-H. 《Photosynthetica》2004,42(3):357-364
Gas exchange, chlorophyll (Chl) fluorescence, and contents of photosynthetic pigments, soluble proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO), and antioxidant enzymes were characterized in the fully expanded 6th leaves in rice seedlings grown on either complete (CK) or on nitrogen-deficient nutrient (N-deficiency) solutions during a 20-chase period. Compared with the control plants, the lower photosynthetic capacity at saturation irradiance (P max) was accompanied by an increase in intercellular CO2 concentration (Ci), indicating that in N-deficient plants the decline in P max was not due to stomatal limitation but due to the reduced carboxylation efficiency. The fluorescence parameters PS2, Fv/Fm, electron transport rate (ETR), and qP showed the same tendency as P max in N-deficient plants. Correspondingly, a higher qN paralleled the rise of the ratio of carotenoid (Car) to Chl contents. However, Fv/Fm was still diminished, suggesting that photoinhibition did occur in the photosystem 2 (PS2) reaction centres. In addition, the activities of antioxidant enzymes on a fresh mass basis were gradually lowered, leading to the aggravation of membrane lipid peroxidation with the proceeding N-deficiency. The accumulation of malonyldialdehyde resulted in the lessening of Chl and soluble protein content. Analyses of regression showed PS2 excitation pressure (1 - qP) was linearly correlated with the content of Chl and inversely with soluble protein (particularly RuBPCO) content. There was a lag phase in the increase of PS2 excitation pressure compared to the decrease of RuBPCO content. Therefore, the increased excitation pressure under N-deficiency is probably the result of saturation of the electron transport chain due to the limitation of the use of reductants by the Calvin cycle. Rice plants responded to N-deficiency and high irradiance by decreasing light-harvesting capacity and by increasing thermal dissipation of absorbed energy.  相似文献   

13.
The relationships between changes in cell suspension absorbance, pigment composition, and resistance to photodamage were investigated in the microalga Haematococcus pluvialis Flotow em. Wille (Chlorophyta) IPPAS H-239 cultivated under high level of photosynthetically active radiation (PAR, 50 W/m2). When the green flagellated cells of H. pluvialis lacking astaxanthin (Ast) and possessing low (<0.5) carotenoid/chlorophyll ratio were irradiated by intense light (2500 W/m2 PAR), rapid and synchronous photobleaching of 70–80% of chlorophyll (Chl) and carotenoids (Car) was observed. By contrast, the rate of pigment photobleaching in cells with Car/Chl > 1, which retained high Chl content (> 0.6 fmol/cell) and accumulated significant amounts of Ast, was two times lower than in the green cells. Red aplanospores, with Car/Chl > 10, containing high amounts of Ast and low amounts of Chl (> 0.8 and < 0.1 fmol/cell, respectively) were resistant to photodestruction. The extent of cell resistance to photobleaching correlated closely with an increase in contribution of Car to light absorption by H. pluvialis cell suspensions. The build up of Ast during acclimation to high light was accompanied by a gradual increase in the optical density ratio OD480/OD678, whereas synchronous (OD480/OD678 ≈ const; r 2 > 0.99) and profound (>20%) bleaching of Car and Chl absorption bands was characteristic of photodamage. The spectral features of photoacclimation and photodamage revealed in this work can be used for nondestructive diagnostics of photodamage in H. pluvialis cultures and for on-line assessment of cell resistance to photooxidative death. The results are discussed with respect to the nondestructive monitoring of laboratory and production cultures of H. pluvialis and their protection from photooxidative death.  相似文献   

14.
The influence of excess irradiance on resistance of wheat (Triticum aestivum L.) photosynthetic apparatus to heating in darkness and in the light was investigated and compared with changes in leaf cell ultra-structure and composition of cell lipids and fatty acids. The leaves of 14- to 16-day-old plants grown at low irradiance (about 20 W/m2) were exposed for 1 h to irradiance of 370 or 600 W/m2 PAR. Using infrared gas analysis, we found that the preexposure of leaves to excess irradiation elevated resistance of apparent photosynthesis to 10-min heat treatment at 40–45°C. The rate of Hill reaction (reduction of 2,6-dichlorophenolindophenol by isolated chloroplasts) was higher for leaves heated at high irradiance than for leaves heated in darkness. During illumination of leaves with strong light, mesophyll cells became more abundant in mitochondria and peroxysomes, as well as in cisternae of endoplasmic reticulum and Golgi complex. The chloroplast thylakoids and grana became more extensive and numerous. At the same time, the leaf content of main classes of membrane glycerolipids increased in parallel with the increase in the phospholipid/glycolipid and lipid/chlorophyll ratios. The unsaturation index of fatty acids of membrane lipids increased because of the elevated content of linolenic acid. Thus, excessive light (not fully utilized in photosynthesis) induced in wheat leaves a series of nonspecific adaptive changes that were similar to those occurring under the action of other environmental factors, such as heat shock, cooling, salinity, and osmotic stresses.  相似文献   

15.
Tobacco plantlets were cultured in vitro under high (200 µmol m–2 s–1) or low (60 µmol m–2 s–1) irradiance with or without saccharose in the medium. Light microscopy and image analysis were used to evaluate the effect of these culture conditions on leaf anatomy. Addition of saccharose resulted in thicker leaves (all leaf layers) and larger mesophyll cells under both growth irradiances. Various irradiance affected leaf anatomy differently when plantlets had been cultivated in presence or absence of saccharose in the medium. While under high irradiance in presence of saccharose leaf thickness and number of chloroplasts per cell section were increased, plantlets grown under high irradiance in absence of saccharose had thinner leaves and less chloroplasts per cell section. The changes were more pronounced in palisade parenchyma layer.  相似文献   

16.
The role of irradiance on the activity of antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) was examined in the leaves of Pisum sativum L. plants grown under low (LL) or high (HL) irradiance (PPFD 50 or 600 μmol m−2 s−1) and exposed after detachment to 5 mM Pb (NO3)2 for 24 h. The activities of both enzymes increased in response to LL compared with HL and no effect of Pb ions was observed. Photosystem (PS) 1 and PS 2 activities were also investigated in chloroplasts isolated from these leaves. LL lowered PS 1 electron transport rate and changes in photochemical activity of PS 1 induced by Pb2+ were visible only in the chloroplasts isolated from leaves of LL grown plants. PS 2 activity was influenced similarly by Pb ions at both PPFD. This study demonstrates that leaves of HL grown plants were less sensitive to lead toxicity than those from LL grown plants. Changes in electron transport rates were the main factors responsible for the generation of reactive oxygen species in the chloroplasts and as a consequence, in induction of antioxidant enzymes.  相似文献   

17.
Strebeyko  P. 《Photosynthetica》2000,38(1):159-160
On the basis of literature and my calculations it was established that a chlorophyll (Chl) particle anchored with a phytol chain to the thylakoid membrane takes up about 1 nm2 of the surface area. At an irradiance of 287 W m-2 the leaves of cabbage seedlings become saturated with photosynthetically active radiation (PAR) thus reaching the maximum photosynthetic rate of 100 µg(C) m-2 s-1, that is 5 CO2 molecules per 1 nm2 per second, and the maximum power with which the Chl particle supplies the process of photosynthesis is 15 aJ.  相似文献   

18.
Hansen  U.  Schneiderheinze  J.  Rank  B. 《Photosynthetica》2002,40(3):369-374
Foliage of Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) was collected in a mixed pine/oak forest at canopy positions differing in radiation environment. In both species, chlorophyll (Chl) a/b ratios were higher in foliage of canopy positions exposed to higher irradiance as compared to more shaded crown layers. Throughout the growing season, pine needles exhibited significantly lower Chl a/b ratios than oak leaves acclimated to a similar photon availability. Hence, pine needles showed shade-type pigment characteristics relative to foliage of oak. At a given radiation environment, pine needles tended to contain more neoxanthin and lutein per unit of Chl than oak leaves. The differences in pigment composition between foliage of pine and oak can be explained by a higher ratio of outer antennae Chl to core complex Chl in needles of P. sylvestris which enhances the efficiency of photon capture under limiting irradiance. The shade-type pigment composition of pine relative to oak foliage could have been due to a reduced mesophyll internal photon exposure of chloroplasts in needles of Scots pine, resulting from their xeromorphic anatomy. Hence, the higher drought tolerance of pine needles could be achieved at the expense of shade tolerance.  相似文献   

19.
A yellow leaf colouration mutant (named ycm) generated from rice T-DNA insertion lines was identified with less grana lamellae and low thylakoid membrane protein contents. At weak irradiance [50 μmol(photon) m−2 s−1], chlorophyll (Chl) contents of ycm were ≈20 % of those of WT and Chl a/b ratios were 3-fold that of wild type (WT). The leaf of ycm showed lower values in the actual photosystem 2 (PS2) efficiency (ΦPS2), photochemical quenching (qP), and the efficiency of excitation capture by open PS2 centres 1 (Fv′/Fm′) than those of WT, except no difference in the maximal efficiency of PS2 photochemistry (Fv/Fm). With progress in irradiance [100 and 200 μmol(photon) m−2 s−1], there was a change in the photosynthetic pigment stoichiometry. In ycm, the increase of total Chl contents and the decrease in Chl a/b ratio were observed. ΦPS2, qP, and Fv′/Fm′ of ycm increased gradually along with the increase of irradiance but still much less than in WT. The increase of xanthophyll ratio [(Z+A)/(V+A+Z)] associated with non-photochemical quenching (qN) was found in ycm which suggested that ycm dissipated excess energy through the turnover of xanthophylls. No significant differences in pigment composition were observed in WT under various irradiances, except Chl a/b ratio that gradually decreased. Hence the ycm mutant developed much more tardily than WT, which was caused by low photon energy utilization independent of irradiance.  相似文献   

20.
Pepper (Capsicum annuum L.) plants were sprayed with salicylic acid (SA) and treated with ultraviolet radiation UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) of 6.1, 5.8, and 5.7 W m−2, respectively. UV significantly reduced contents of chlorophyll (Chl) a and b, and carotenoids (Car). SA treatment moderated Chl and Car reduction in plants treated with UV-B and UV-C. The quantity of antocyanins, flavonoids, rutin, and UV-absorbing compounds in plants that were treated with UV-B, UV-C, and SA were significantly increased. Foliar spray of SA counteracted the UV effects on pepper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号