首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Euphorbia mosaic virus was purified from infected plants of Nicotiana benthamiana. Highest concentrations of virus particles were found in infected plant tissue between 10–12 days after inoculation. The enzyme driselase assisted in purification of the virus particles from the infected tissue yielding about 600 μg/kg of plant material. Purified preparations showed a maximum absorption at 260–263 nm and the ratio of absorption at 260 and 280 nm was 1.4. The viral nucleic acid was digestedby DNase I and S1 Nuclease but not RNase A. A single coat protein with a MW of 32,000 d and two DNA bands with a MW 0.96 × 106 d (2870 nucleotides) and 0.90 × 106 d (2700 nucleotides) were associated with the purified virus particles. Virus specific DNA was isolated from infected tissue between 7 and 15 days after inoculations.  相似文献   

2.
Isometric virus-like particles (IVLP) were detected in crude sap from Kalanchoe pinnata, K. daigremontiana and K. tubiflora plants showing a mild mosaic on the leaves. These particles of 35 nm in diameter were transmitted mechanically to several test plants but not to healthy Kalanchoe. Air temperatures above 30 °C hindered the infection process. The IVLP were purified from systematically infected Nicotiana benthamiana using Triton X-100 as clarifying agent followed byP, EG precipitation. IVLP were degraded by organic solvents and formed aggregates in the presence of 2 mmol/1 CaCl2. The particles occurred in relatively low concentration in plant sap and lost infectivity in leaves frozen at -70 °C for one week and in purified preparations kept at 4 °C. In buffer crude sap of N. benthamiana IVLP had a thermal inactivation point between 45 and 50 °C on a longevity in vitro of 20 h at 25 °C. Particles contained one nucleoprotein component witha molecular weight of 46,000 daltons and a ssRNA species which, when denatured, had a molecular weight of 1.2 × 106. IVLP purified preparations exhibited a typical nucleoprotein absorption spectrum with a maximum at 254–260 nm and a minimum at 240,–243 nm and a A 260/280 ratio of 1.56. The buoyant density of the IVLP was 1.32 g/ml calculated by isopycnic centrifugation on CsCl. Ultrastructural studies in infected leaves of K. pinnata indicated that IVLP caused an increase in chloroplast volume, distortion of the grana and reduced the number of thylakiods per grana. IVLP infection also impared the diurnal pattern of synthesis and hydrolysis of starch, characteristic of CAM plants. The non-serological reaction of the IVLP with antisera specific to members of 7 different groups of spherical viruses as well as the combination of physicochemical properties and host range, exhibited by these particles impeded their taxonomic location. In nature, young Kalanchoe plantlets acquire the IVLP through their physical connections with the infected mature leaves.  相似文献   

3.
Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum)   总被引:1,自引:0,他引:1  
Pepino mosaic virus (PepMV), a previously undescribed virus, was found in fields of pepino (Solanum muricatum) in the Canete valley in coastal Peru. PepMV was transmitted by inoculation of sap to 32 species from three families out of 47 species from nine families tested. It caused a yellow mosaic in young leaves of pepino and either a mild mosaic or symptomless infection in 12 wild potato species, five potato cultivars and potato clone USDA 41956 but S. stoloniferum and potato cultivars Merpata and Revolucion reacted with severe systemic necrotic symptoms. The virus was transmitted by plant contact but not by Myzus persicae. It was best propagated and assayed in Nicotiana glutinosa. Sap from infected N. glutinosa was infective after dilution to 10-1 but not 10-6, after 10 min at 65°C but not 70°C and after 3 months at 20°C. PepMV had filamentous particles with a normal length of 508 nm; the ends of some seemed damaged. Ultra-thin sections of infected leaves of N. glutinosa revealed many inclusions containing arrays of virus-like particles some of which were banded or whorled; small aggregates of virus-like particles were also common. The virus was purified by extracting sap from infected leaves in a solution containing 0·065 M disodium tetraborate, 0·435 M boric acid, 0·2% ascorbic acid and 0·2% sodium sulphite at pH 7·8, adding silver nitrate solution to the extract, and precipitating the virus with polyethylene glycol followed by two cycles of differential centrifugation. Particles of PepMV normally yielded two proteins with molecular weights of 26 600 and 23 200, but virus obtained from infective sap aged overnight yielded only the smaller protein suggesting that it was a product of degradation of the larger one. The virus is serologically related to two potexviruses, narcissus mosaic and cactus X and its properties are typical of the potexvirus group.  相似文献   

4.
A virus disease characterized by chlorotic vein banding, chlorotic line pattern along the margins or midrib of mature leaflets and chlorotic spots/rings was observed on commercial groundnut crops in Rayalaseema area of Andhra Pradesh with an incidence from 1% to nearly 60%. The virus was transmitted by mechanical inoculation in extracts prepared with 0.01 M potassium phosphate butter, pH 8.0 to 21 species from the Chenopodiaceae, Cruciferae, Leguminosae and Solanaceae, Chenopodium quinoa was found to be a good local lesion host. The virus was neither seed-transmitted through 1591 groundnut seeds nor aphid-transmitted by Aphis craccivora, Myzus persicae and Rhopalosiphum maidis either in non-persistent or semi-persistent manner. The virus remained infective in buffered tobacco leaf sap at a dilution of 10?5; in a 10?1 dilution of buffered sap the virus was infective for 2–3 days at 22–29°C or when heated to 65°C for 10 min but not to 70°C. Clarification treatments with organic solvents with 10% chloroform was least damaging. The virus was purified from Nicotiana rustica leaves. Purified virus contained isometric particles of 51 nm in diameter with an electron dense core of 22 nm and two major polypeptides of 76 kDa and 36 kDa. A polyclonal antiserum to this virus was produced. In agar gel double diffusion, enzyme-linked immunosorbent assay and in electro-blot immunoassay rests the virus was related to peanut chlorotic streak virus and not to cauliflower mosaic, figwort mosaic and soybean chlorotic mottle viruses.  相似文献   

5.
DNA probes, made by cloning double-stranded forms of each of the genome parts (DNA-1 and DNA-2) of the Kenyan type isolate of African cassava mosaic virus (ACMV-T), reacted strongly with extracts from Nicotiana benthamiana plants infected with ACMV-T, or with Angolan or Nigerian isolates that are closely serologically related to the type isolate. However, only the DNA-1 probes reacted with extracts of TV. benthamiana infected with a Kenyan coast isolate (ACMV-C), which is serologically less closely related to ACMV-T. DNA-1 and DNA-2 probes also reacted with extracts of mosaic-affected Angolan cassava plants, including some which have not yielded ACMV particles detectable by immunosorbent electron microscopy and from which virus isolates have not been transmitted to TV. benthamiana. These anomalous plants, unlike other naturally infected cassava plants, showed mosaic symptoms on all their leaves which, however, contained only traces of virus particle antigen detectable by enzyme-linked immunosorbent assay. They contain isolates of ACMV that are probably defective for particle production. ACMV-T particles accumulated optimally in N. benthamiana at 20–25°C. At 30°C fewer particles, which apparently had a slightly greater specific infectivity, were produced. At 15°C, considerable quantities of virus particle antigen, virus DNA and virus particles were produced but the particles were poorly infective, and the few that could be purified contained an abnormally large proportion of polydisperse linear DNA molecules, and fewer circular molecules than usual. Angolan isolates, whether particle-producing or not, likewise replicated better in cassava plants at 23 °C than at 30 °C. In contrast, ACMV-C attained only very low concentrations in N. benthamiana, but these were greater at 30 °C than at 23°C.  相似文献   

6.
Cowpea mosaic virus was one of the viruses isolated from Crotalaria juncea showing mosaic, distortion and puckering symptoms. The virus induced local necrotic lesions in Canavalia ensiformis, Cassia occidentalis, Nicotiana debneyi, N. occidentalis, N. repanda and N. sylvestris and some cultivars of Phaseolus vulgaris 4–6 days after inoculation. It induced local chlorotic spots, which later became necrotic, as well as systemic chlorotic spots, vein chlorosis, distortionand puckering in Chenopodium amaranticolor. Sap from systemically infected cowpea cv. ‘C20-55’was infective after dilution to 10?5 but not 10?6, after 10 min at 65°C but not 70°C, or after 4 days, but not 5 days, at a room temperature of 15–25°C. Infectious virus was recovered from fresh reproductive tissues of infected cowpea cvs ‘C20-55’and ‘Ife Brown’ plants but not after dehydration.  相似文献   

7.
Narcissus mosaic virus   总被引:1,自引:0,他引:1  
Narcissus mosaic virus (NMV) is widespread in British crops of trumpet, large-cupped and double daffodils, but was not found in Narcissus jonquilla or N. tazzeta. Many commercial daffodil cultivars seem totally infected, and roguing or selection is therefore impracticable. Strict precautions by breeders and raisers to prevent infection of new cultivars is recommended. Healthy daffodil seedlings were readily infected with NMV by mechanical inoculation, but the virus was not detected in them until 17 months after inoculation, when a mild mosaic appeared. NMV infected twenty-eight of fifty-three inoculated plant species; only five (Nicotiana clevelandii, Gomphrena globosa, Medicago sativa, Trifolium campestre and T. incarnatum) were infected systemically, and NMV was cultured in these and assayed in Chenopodium amaranticolor and Tetragonia expansa. The virus was not transmitted to and from G. globosa or N. clevelandii by three aphid species, or through the seeds of Narcissus, G. globosa and N. clevelandii but was transmitted by handling. G. globosa sap was infective at a dilution of 10 -5 but not at 10-6, when heated for 10 min. at 70° C. but not at 75° C, and after 12 weeks at 18° C, or 36 weeks at 0–4° C. NMV withstood freezing in infected leaves and sap, and purified preparations and freeze-dried sap remained infective for over 2 years. NMV was precipitated without inactivation by ammonium sulphate (313 g./l.) but was better purified by differential centrifugation of phosphate-buffer extracts treated with n-butanol. Such virus preparations from G. globosa, N. clevelandii, C. amaranticolor and T. expansa were highly infective, serologically active, produced a specific light-scattering zone when centrifuged in density-gradients and contained numerous unaggregated particles with a commonest length of 548–568 mμ. Antisera prepared in rabbits had precipitin tube titres of 1/4096. NMV was detected in three experimental hosts but not in narcissus sap. Unlike some viruses with elongated particles, NMV precipitates with antiserum in agar-gel. Purified preparations reacted with antiserum to a Dutch isolate of NMV but not with antisera to seven other viruses having similar particles and in vitro properties, or to narcissus yellow stripe virus.  相似文献   

8.
A sap-transmissible virus obtained from cassava with a green mottle disease occurring at Choiseul, Solomon Islands, was transmitted to 30 species in 12 plant families and was readily seed-borne in Nicotiana clevelandii. In cassava plants infected by inoculation with sap, the first leaves to be infected systemically developed a mottle with some necrosis whereas leaves produced subsequently were symptomless but contained the virus. Most other species developed chlorotic or necrotic local lesions and systemic mottle or necrosis. This was followed, in several species, by production of small symptomless virus-containing leaves. The virus was cultured in N. clevelandii; Chenopodium quinoa was used for local-lesion assays. Leaf extracts from infected N. clevelandii were infective after dilution to 10–5 but usually not at 10–6, after heating for 10 min at 60°C but not at 65°C, and after storage at 20°C for at least 12 days. The virus has isometric particles of 26 nm diameter which sediment as three components, all containing a protein of mol. wt c. 53000. The two fastest sedimenting components respectively contain single-stranded RNA of mol. wt, estimated after glyoxylation, c. 2.9 × 106 and 2.3 × 106. Both RNA species are needed for infection of plants. In tests with antiserum prepared to purified virus particles, the virus was detected in cassava and N. clevelandii by gel-diffusion precipitin tests, by immunosorbent electron microscopy and by ELISA. Despite its similarity to nepoviruses, the virus did not react with antisera to 18 members of the group. It was named cassava green mottle virus and is considered to be a previously undescribed nepovirus.  相似文献   

9.
Hibiscus latent ringspot virus (HLRV) was prevalent in Hibiscus rosa-sinensis in Ibadan, Nigeria. It was readily transmitted mechanically to 22 of 73 species from seven of 20 families, but was best propagated in Nicotiana clevelandii or Hibiscus cannabinus and assayed in Chenopodium murale. HLRV was readily purified from systemically infected hosts by differential centrifugation of leaf extracts clarified with 8.0% n-butanol, followed by molecular permeation chromatography on controlled-pore glass beads (700 Å, 120–200 mesh). The virus has isometric particles c. 28 nm in diameter which sedimented as three components (T, M and B), with sedimentation coefficients (s°20, w) of 51; 114 and 132 S and buoyant densities in caesium chloride of 1.32, 1.49 and 1.52 g/cm3, respectively. All three components contained a single polypeptide of rnol. wt 53.6 × 103. T component particles contained only protein but M and B components also contained single-stranded RNA of rnol. wt 2.2 × 106 and 2.5 × 106, respectively. The properties of HLRV suggest affinities with nepoviruses but no serological relationship was detected between HLRV and 15 recognised or possible members of the nepovirus group.  相似文献   

10.
Some hosts and properties of dahlia mosaic virus   总被引:2,自引:0,他引:2  
Dahlia mosaic virus (DMV) infected twenty-five of the eighty-five plant species from four of eighteen families inoculated, but only dahlias were found naturally infected. DMV infected fourteen members of the Solanaceae, Amaranthaceae and Chenopodiaceae, and eleven of twenty-nine Compositae. Verbesina encelioides was the best plant for diagnosis, assay and source of virus. Systemically infected hosts contained ovoid intracellular inclusions 2–5–10 μm in diameter which were shown by electron microscopy to consist of a finely granular, vacuolated matrix containing numerous virus particles. V. encelioides sap was sometimes infective after dilution to 1/2000 but not 1/3000, after heating for 10 min to 75 °C but not 80 °C, and after 4 days at 18 °C or 32 days at 2 °C. Sap from infected dahlia, Zinnia elegans or Ageratum houstonianum rapidly became non-infective, but extracts made with 0·05 M sodium thioglycollate or 0·03 M sodium diethyldithiocarbamate remained infective for 24–48 h at 18 °C. Some purified preparations remained infective for up to 3 years at 2 °C. DMV was best purified from V. encelioides by one or more cycles of differential centrifugation, followed by density-gradient centrifugation and further concentration. Composition, molarity, and pH of the extracting buffer had little effect on yield of virus. Best yields were obtained from extracts stored with 8-5% (v/v) n-butanol at 2 °C for 10–14 days. Purified preparations were infective at dilutions up to 1/5000, had ultraviolet absorption spectra typical of a nucleoprotein (Å 260/280 = 1·47), probably contained DNA, and had a single sedimenting component having isometric particles c. 50 nm in diameter with a sedimentation coefficient of 254 S. The cryptogram of DMV is (D)/*:*/(16):S/S:S/Ap. DMV is serologically closely related to cauliflower mosaic virus, but the viruses are distinct pathogens. The two viruses have similar properties, size, shape and other characteristics, and together with at least three others form a small but apparently homogeneous group of aphid-borne viruses.  相似文献   

11.
The Indian cassava mosaic virus (ICMV) was transmitted by the whitefly Bemisia tabaci and sap inoculation. ICMV was purified from cassava and from systemically infected Nicotiana benthamiana leaves. Geminate particles of 16–18 × 30 nm in size were observed by electron microscopy. The particles contained a single major protein of an estimated molecular weight of 34,000. Specific antiserum trapped geminate particles from the extracts of infected cassava and N. benthamiana plants in ISEM test. The virus was detected in crude extracts of infected cassava, ceara rubber, TV. benthamiana and N. tabacum cv. Jayasri plants by ELISA. ICMV appeared serologically related to the gemini viruses of Acalypha yellow mosaic, bhendi yellow vein mosaic, Croton yellow vein mosaic, Dolichos yellow mosaic, horsegram yellow mosaic, Malvastrum yellow vein mosaic and tobacco leaf curl.  相似文献   

12.
Ullucus virus C (UVC) is a comovirus prevalent in Ullucus tuberosus grown at high altitudes in the Bolivian and Peruvian Andes. It was transmitted mechanically to U. tuberosus (Basellaceae) and to five of 26 species from three of eight other families, infecting U. tuberosus symptomlessly but inducing conspicuous systemic infection in Chenopodium amaranticolor and C. quinoa. Sap from infected C. quinoa was usually infective after 10 min at 70 but not 75 °C, after dilution to 10-7 but not 10-8, and after 8 but not 16 wk at 20 °C. UVC was not transmitted by either of two aphid species (Aphis gossypii and Myzus persicae) or through seed of C. quinoa, but it was transmitted by leaf contact between infected and healthy plants. UVC has isometric particles which, in neutral phosphotungstate, are c. 28 nm in diameter. The particles sediment as three components (T, M and B) with sedimentation coefficients (s?20, w) of 51 S (T), 95 S (M) and 116 S (B). M component particles have a buoyant density (g cm-3) in caesium chloride of 1.404, and B component particles separated into minor and major sub-components with densities of 1.409 and 1.463, respectively. T, M and B particles were serologically indistinguishable, and each contained similar relative amounts of two polypeptides of mol. wts 20 700 and 45 100. T particles contained only protein, but M particles also contained c. 30% ss-RNA of mol. wt 1–45 ×106 and B particles c. 38% ss-RNA of mol. wt 2·2 × 106. The virus is serologically distantly related to cowpea mosaic virus but, as it showed no relationship to any of 11 other similar viruses, it is probably a distinct member of the comovirus group.  相似文献   

13.
East African strains of cowpea aphid-borne mosaic virus   总被引:1,自引:0,他引:1  
Cowpea aphid-borne mosaic virus (CAMV) was isolated for the first time in East Africa where three distinct strains, type, veinbanding and mild, were differentiated by host range and serology. The three strains infected 17/38, 18/37 and 10/35 legume species, and 11/21, 7/21 and 3/19 non-legume species, respectively. The viruses were propagated in cowpea and assayed in Chenopodium amaranticolor. Isolates of all three strains had similar in vitro properties: dilution end point between 10-3 and 10-4; thermal inactivation point between 56 and 58 °C; longevity in vitro between 2 and 3 days. Infectivity of sap from frozen leaves was high after 4 wk but much less after 7 wk; infectivity was largely precipitated by 50% acetone but inactivated by 50% ethanol. High yields of virus were consistently obtained from cowpea by extracting systemically infected leaves in 0.5 m sodium citrate containing 1% mercaptoethanol (pH 8.1), and clarifying with 8.5 ml n-butanol/100 ml sap. Virus preparations contained numerous unaggregated and aggregated virus particles c. 750 nm long and contained components with sedimentation coefficients (s°20, w) of 150S and 175S (presumably unaggregated and aggregated particles, respectively). CAMV is serologically distantly related to bean common mosaic virus, but not to bean yellow mosaic or eight other morphologically similar viruses. It is a typical but distinct member of the potato virus Y group.  相似文献   

14.
Host range and some properties of potato mop-top virus   总被引:2,自引:0,他引:2  
Potato mop-top virus (PMTV) was transmitted by inoculation of sap to twenty-six species in the Solanaceae or Chenopodiaceae and to Tetragonia expansa; species in eleven other plant families were not infected. The virus was cultured in inoculated leaves of Nicotiana tabacum cv. Xanthi-nc or in N. debneyi. Diagnostic local lesions were produced in Chenopodium amaranticolor. In winter, ten solanaceous species were slowly invaded systemically but the first leaves infected were those immediately above inoculated leaves. When transmitted to Arran Pilot potato by the vector Spongospora subterranea, PMTV induced all the main types of shoot and tuber symptoms found in naturally infected plants. Isolates of PMTV from different sources differed considerably in virulence. PMTV-containing tobacco sap lost infectivity when heated for 10 min at 80 °C, diluted to 10-4, or stored at 20 °C for 14 weeks. Infectivity was partially stabilized by 0·02% sodium azide. When sap was centrifuged for 10 min at 8000 g, infectivity was mainly in the sediment. Infective sap contained straight rod-shaped particles about 20 nm wide, with lengths up to 900 nm and crossbands at intervals of 2·5 nm. Many of the particles were aggregated side-to-side, and the ends of most seemed damaged. The slight infectivity of phenol-treated leaf extracts was abolished by pancreatic ribonuclease. The present cryptogram of PMTV is R/*:*/*:E/E:S/Fu.  相似文献   

15.
A manually transmissible virus isolated from tomato plants with stunting, unfruitfulness, malformation and yellow rings and line patterns of the leaves was indistinguishable from Pelargonium zonate spot virus (PZSV) in biological, physico-chemical and serological properties. The tomato isolate (PZSV-T) of PZSV was seed transmitted in Nicotiana glutinosa and was detected in the pollen of this host. In sap of N. glutinosa PZSV-T lost infectivity after diluting 10-1 to 10-2, heating for 10 min at 35 to 40 °C or storage at 25 °C for 7 h. Virus particles were quasi-spherical with a diameter ranging between 25 and 35 nm with a modal value of 29 nm. Particles sedimented as three components (TV, MV and BV) with sedimentation coefficients of 80S (TV), 90S (MV) and 118S (BV); component BV is probably an aggregate of TV. Particles were unstable in CsCl and CS2SO4 but formaldehyde-stabilised particles banded at a common density of 1–268 g/cm3 in Cs2SO4. Particles contained a single protein species with mol. wt of c. 23000 and c. 18% single stranded RNA present as two species with mol. wts of c. 1.25 × 106 (RNA-1) and 0.95 × 106 (RNA-2). Mixtures of RNA-1 + RNA-2 were infectious and this infectivity was not enhanced by the addition of coat protein. Virus particles had a Tf (mid point of extinction when heated) of 63 °C and were readily dissociated by 0.1% SDS. PZSV-T was serologically unrelated to alfalfa mosaic and to 32 isometric viruses including five ilarviruses. Some properties of PZSV resemble those of ilarviruses but others are sufficiently different to suggest that it may not be a member of this virus group.  相似文献   

16.
Studies on the occurrence of tomato bushy stunt virus in English rivers   总被引:4,自引:0,他引:4  
Tomato bushy stunt virus (TBSV) of unknown source was isolated from water of the River Thames, near Oxford. The isolate designated TBSV-T was mechanically transmissible to several tomato (Lycopersicon esculentum) cvs and to other species including Petunia hybrida, pepper (Capsicum annuum). eggplant (Solanum melongena), Nicotiana clevelandii, Chenopodium amaranticolor and C. quinoa in which it caused systemic symptoms. It caused no infection of globe artichoke (Cynara scolymus) or Pelargonium domesticum. The virus was not adsorbed to soil and could be isolated from leachate of soil in which systemically-infected tomato or C. quinoa plants were grown. Tomato plants became infected when grown in soil watered with virus suspensions. TBSV-T was infective after 10 min at 80°C but not at 90°C and when diluted to 10-5 but not to 10-6. Purified virus preparations contained C. 30 nm isometric particles. In gel-diffusion serological tests, TBSV-T reacted with homologous anti-serum and with antiserum to petunia asteroid mosaic virus but not to pelargonium leaf curl virus. Seed-borne infection (50–65%) of TBSV was demonstrated in plants grown from seed of symptomlessly-infected tomato fruit. TBSV was isolated from symptomlessly-infected tomato fruit imported from Morocco during October-April 1981. One of the isolates (TBSV-M) was indistinguishable from TBSV-T in host range, symptomatology and serological reactions. TBSV was also found in tomato plants growing extraneously in primary settlement beds at sewage works; such plants having been derived from undigested seeds in sewage. Because of its ‘alimentary-resistance’ in man, it is possible that one ecological route whereby TBSV enters rivers is by man's consumption of TBSV-infected tomatoes and eventual sewage dispersal into rivers.  相似文献   

17.
A virus found in cassava from the north-west of the Ivory Coast was transmitted by inoculation with sap extracts to herbaceous species in six plant families. Chenopodium quinoa was used as a propagation host and C. murale was used for local lesion assays. The virus particles are bacilliform, c. 18 nm in diameter, with predominant lengths of 42,49 and 76 nm and a structure apparently similar to that found in alfalfa mosaic virus. Purified preparations of virus particles had A260/A280 of 1.7 ±0.05, contained one protein of Mrc. 22 000, and yielded three species of RNA with Mr (× 10-6) of c. 0.7, 0.8 and 1.2. Although the virus particles were poorly immunogenic, an antiserum was produced and the virus was detected by enzyme-linked immunosorbent assay (DAS-ELISA) in leaf extracts at concentrations down to c. 6 ng/ml. Four other field isolates were also detected, including a strain which caused only mild systemic symptoms in C. quinoa instead of necrosis. The naturally infected cassava source plants were also infected with African cassava mosaic virus (ACMV) but when the new virus was cultured in Nicotiana benthamiana, either separately or together with ACMV, its concentration was the same. The new virus did not react with antisera to several plant viruses with small bacilliform or quasi-bacilliform particles, and alfalfa mosaic virus reacted only weakly and inconsistently with antiserum to the cassava virus. The new virus, for which the name cassava Ivorian bacilliform virus is proposed, is tentatively classified as the second member of the alfalfa mosaic virus group.  相似文献   

18.
A new virus, peanut stripe (PStV), isolated from groundnut (Arachis hypogaea) in the USA, induced characteristic striping, discontinuous vein banding along the lateral veins, and oakleaf mosaic in groundnut. The virus was also isolated from germplasm lines introduced from the People's Republic of China. PStV was transmitted by inoculation of sap to nine species of the Chenopodiaceae, Leguminosae, and Solanaceae; Chenopodium amaranticolor was a good local lesion host. PStV was also transmitted by Aphis craccivora in a non-persistent manner and through seed of groundnut up to 37%. The virus remained infective in buffered plant extracts after diluting to 10-3, storage for 3 days at 20°C, and heating for 10 min at 60°C but not 65°C. Purified virus preparations contained flexuous filamentous particles c. 752 nm long, which contained a major polypeptide of 33 500 daltons and one nucleic acid species of 3·1 × 106 daltons. In ELISA, PStV was serologically related to blackeye cowpea mosaic, soybean mosaic, clover yellow vein, and pepper veinal mottle viruses but not to peanut mottle, potato Y, tobacco etch, and peanut green mosaic viruses. On the basis of these properties PStV is identified as a new potyvirus in groundnut.  相似文献   

19.
A mechanically transmissible soil-borne virus causing peanut clump disease in Upper Volta is described. It infected mainly species of Chenopodia-ceae and was propagated in Chenopodium amaranticolor. Infectivity was lost from sap of C. amaranticolor after 10 min at 64 °C, and after dilution to 10-5 but not io-4. A purification procedure is described. The particles are rod-shaped and of two predominant lengths, 190 and 245 nm. The virus is not serologically related to tobacco rattle, pea early-browning, or soil-borne wheat mosaic viruses, or to a virus associated with a rhizomania-like disease of beet.  相似文献   

20.
Arracacha virus A (AVA), a previously undescribed virus, is common in arracacha (Arracacia xanthorrhiza; Umbelliferae) in the Huanuco region of the Peruvian Andes. AVA was not transmitted by Myzus persicae, but was transmitted by inoculation of sap to 38 species from 10 families out of 63 species from 12 families tested. AVA was best propagated and assayed in Chenopodium quinoa and Nicotiana clevelandii in which it caused severe diseases. Sap from infected C. quinoa was occasionally infective after dilution to 10-4 but not 10-5, after 10 min at 65 °C but not 70 °C, and after 15 days at 20 °C. In neutral phosphotungstate, AVA has isometric particles c. 26 nm in diameter with a hexagonal profile, some of which were either fully or partially penetrated by the negative stain. Up to 50–200 E2601cm units of purified virus was obtained from 1 kg of infected N. clevelandii leaf by extraction in 0.05 M phosphate buffer at pH 7.5 containing 0.05 M ethylene diaminetetra-acetate, and clarification with chloroform, followed by differential precipitation with ammonium sulphate and three cycles of differential centrifugation. Purified virus sedimented as three components with sedimentation coefficients (S20w°) of 50 S, 92 S and 125 S and E260/E280 ratios of 0.65, 1.50 and 1.85 respectively. At equilibrium in CsCl gradients, buoyant densities of the 50, 92 and 125 S components were 1.32, 1.45 and 1.52 g/cm3 respectively. From the sedimentation coefficients and buoyant densities, the nucleic acid contents of the 92 S and 125 S components were estimated at 30–35% and 43–44% respectively. Only the 125 S component seemed to be infective but its infectivity was greater when mixed with the 92 S component. All three components contained a single protein with a molecular weight of 53 000. AVA was not serologically related to any of 33 other morphologically similar viruses. Although the vector is unknown, its properties suggest that it is a member of the nepovirus group. The cryptogram of AVA is */*: */43–44 +*/30–35: S/S:S/*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号