首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
beta(2)-Glycoprotein I (beta(2)GP1), a 50 kDa serum glycoprotein, binds anionic phospholipids and plays a role in phosphatidylserine (PS)-dependent coagulation and apoptotic processes. To characterize the molecular consequences that occur to target membranes upon binding of beta(2)GP1, the interaction between beta(2)GP1 and PS-containing vesicles was investigated by fluorescent spectroscopy. Membranes containing pyrene-labeled lipid showed that binding of beta(2)GP1 induced a decrease in excimer/monomor ratios (E/M) of the target membrane. Although these membrane alterations occurred in isotonic buffer, the effects were greater in low ionic strength buffer and were coincident to membrane precipitation. In contrast, increases in membrane polarization were only seen in low ionic strength buffer. Analysis of beta(2)GP1 binding kinetics by resonance energy transfer between fluorescein-labeled beta(2)GP1 and rhodamine-containing PS vesicles revealed a two-component process: (1) a primary and rapid binding via the C-terminus that occurred <2 s in both isotonic and low ionic strength buffers, and (2) a sequential binding of the N-terminus that was approximately 100-fold slower in low ionic strength solution. Taken together, these data suggest that beta(2)GP1 alters the fluidity and membrane polarization of its target membrane, which in low ionic strength buffer is of sufficient magnitude to induce precipitation.  相似文献   

2.
Nuclease type colicins and related bacteriocins possess the unprecedented ability to translocate an enzymatic polypeptide chain across the Gram-negative cell envelope. Here we use the rRNase domain of the cytotoxic ribonuclease colicin E3 to examine the structural changes on its interaction with the membrane. Using phospholipid vesicles as model membranes we show that anionic membranes destabilize the nuclease domain of the rRNase type colicin E3. Intrinsic tryptophan fluorescence and circular dichroism show that vesicles consisting of pure DOPA act as a powerful protein denaturant toward the rRNase domain, although this interaction can be entirely prevented by the addition of salt. Binding of E3 rRNase to DOPA vesicles is an endothermic process (DeltaH=24 kcal mol-1), reflecting unfolding of the protein. Consistent with this, binding of a highly destabilized mutant of the E3 rRNase to DOPA vesicles is exothermic. With mixed vesicles containing anionic and neutral phospholipids at a ratio of 1:3, set to mimic the charge of the Escherichia coli inner membrane, destabilization of E3 rRNase is lessened, although the melting temperature of the protein at pH 7.0 is greatly reduced from 50 degrees C to 30 degrees C. The interaction of E3 rRNase with 1:3 DOPA:DOPC vesicles is also highly dependent on both ionic strength and temperature. We discuss these results in terms of the likely interaction of the E3 rRNase and the related E9 DNase domains with the E. coli inner membrane and their subsequent translocation to the cell cytoplasm.  相似文献   

3.
The tryptophan environments of interleukins 1 alpha and 1 beta, immunomodulatory proteins with similar biological activities but only 25% sequence homology, were characterized by steady-state and dynamic fluorescence measurements. Both proteins exhibited similar emission maxima, but the emission intensity of IL-1 beta was greatly enhanced by increasing the ionic strength of the medium, whereas that of IL-1 alpha was unaffected. The two cytokines were also similarly quenched by the polar quencher acrylamide, but differences were observed for the ionic quenchers iodide and cesium. The fluorescence intensity decays of both cytokines were characterized by two (long and short) component lifetimes. However, the average lifetime of IL-1 beta (4.4 ns) was much longer than that of IL-1 alpha (1.93 ns). Taken together with the results of steady-state measurements, we suggest that the single tryptophan of IL-1 beta is statically quenched by neighboring charged residues, whereas the tryptophan fluorescence of IL-1 alpha is unaffected by ionic strength, and that the tryptophans of the two proteins have different accessibilities to ionic quenchers. The results are discussed in terms of similarities and differences in the tryptophan environments of the two proteins.  相似文献   

4.
Two-photon excitation microscopy shows coexisting regions of different generalized polarization (GP) in phospholipid vesicles, in red blood cells, in a renal tubular cell line, and in purified renal brushborder and basolateral membranes labeled with the fluorescent probe laurdan. The GP function measures the relative water content of the membrane. In the present study we discuss images obtained with polarized laser excitation, which selects different molecular orientations of the lipid bilayer corresponding to different spatial regions. The GP distribution in the gel-phase vesicles is relatively narrow, whereas the GP distribution in the liquid-crystalline phase vesicles (DOPC and DLPC) is broad. Analysis of images obtained with polarized excitation of the liquid-crystalline phase vesicles leads to the conclusion that coexisting regions of different GP must have dimensions smaller than the microscope resolution (approximately 200 nm radially and 600 nm axially). Vesicles of an equimolar mixture of DOPC and DPPC show coexisting rigid and fluid domains (high GP and low GP), but the rigid domains, which are preferentially excited by polarized light, have GP values lower than the pure gel-phase domains. Cholesterol strongly modifies the domain morphology. In the presence of 30 mol% cholesterol, the broad GP distribution of the DOPC/DPPC equimolar sample becomes narrower. The sample is still very heterogeneous, as demonstrated by the separations of GP disjoined regions, which are the result of photoselection of regions of different lipid orientation. In intact red blood cells, microscopic regions of different GP can be resolved, whereas in the renal cells GP domains have dimensions smaller than the microscope resolution. Preparations of renal apical brush border membranes and basolateral membranes show well-resolved GP domains, which may result from a different local orientation, or the domains may reflect a real heterogeneity of these membranes.  相似文献   

5.
The amphipathic α-helix is a recognised structural motif that is shared by membrane-associating proteins and peptides of diverse function. The aim of this paper is to determine the orientation of an α-helical amphipathic peptide on the bilayer surface. We use five amphipathic 18-residue peptide analogues of a class A amphipathic peptide that is known to associate with a bilayer surface. Tyrosine and tryptophan are used as spectroscopic probes to sense local environments in the peptide in solution and when bound to the surface of unilamellar phosphatidylcholine vesicles. In a series of peptides, tryptophan is moved progressively along the sequence from the nonpolar face (positions 3, 7, 4) to the polar face of the peptide (positions 2, 12). The local environment of the tryptophan residue at each position is determined using fluorescence spectroscopy employing quantum yield, and the wavelength of the emission maximum as indicators of micropolarity. The exposure of the tryptophan residues at each site is assessed by acrylamide quenching. On association with vesicles, the tryptophan residues at positions 3, 7 and 14 are in nonpolar water-shielded environments, and the tryptophan at position 12 is in an exposed polar environment. The tryptophan at position 2, which is located near the bilayer-water interface, exhibits intermediate behaviour. Analysis of the second-derivative absorption spectrum confirmed that the tyrosine residue at position 7 is in a nonpolar water-shielded environment in the peptide-lipid complex. We conclude that these class A amphipathic peptides lie parallel to the lipid surface and penetrate no deeper than the ester linkages of the phospholipids. Received: 8 April 1998 / Revised version: 6 July 1998 / Accepted: 7 August 1998  相似文献   

6.
Platelet membrane glycoproteins (GP) IIb and IIIa have been identified as platelet aggregation sites. These glycoproteins form a heterodimer complex (GP IIb-IIIa) in the presence of Ca2+. To study the morphology of this glycoprotein complex in membranes, we incorporated GP IIb-IIIa into artificial phospholipid vesicles using a detergent (octyl glucoside) dialysis procedure. Phosphatidylserine-enriched vesicles (70% phosphatidylserine, 30% phosphatidylcholine) incorporated approximately 90% of the GP IIb-IIIa as determined by sucrose flotation. Glycoprotein IIb-IIIa incorporation into the vesicles was unaffected by ionic strength, suggesting a hydrophobic interaction between the glycoprotein and the phospholipid. In both intact platelets or phospholipid vesicles, GP IIb was susceptible to neuraminidase hydrolysis, indicating that most of the glycoprotein complexes were oriented toward the outside of the platelets or vesicles. The morphology of GP IIb-IIIa in the phospholipid vesicles was observed by negative staining electron microscopy. Individual GP IIb-IIIa complexes appeared as spikes protruding as much as 20 nm from the vesicle surface. Each spike consisted of a GP IIb "head," which was distal to the vesicle and was supported by the GP IIIa "tails." The GP IIb-IIIa complex appeared to be attached to the vesicle membrane by the tips of the GP IIIa tails. Treatment of vesicles with EGTA dissociated the GP IIb-IIIa complex. The dissociated glycoproteins remained attached to the phospholipid vesicles, indicating that both GP IIb and GP IIIa contain membrane-attachment sites. These data suggest a possible structural arrangement of the GP IIb-IIIa complex in whole platelets.  相似文献   

7.
RasGRPs (guanine-nucleotide-releasing proteins) are exchange factors for membrane-bound GTPases. All RasGRP family members contain C1 domains which, in other proteins, bind DAG (diacylglycerol) and thus mediate the proximal signal-transduction events induced by this lipid second messenger. The presence of C1 domains suggests that all RasGRPs could be regulated by membrane translocation driven by C1-DAG interactions. This has been demonstrated for RasGRP1 and RasGRP3, but has not been tested directly for RasGRP2, RasGRP4alpha and RasGRP4beta. Sequence alignments indicate that all RasGRP C1 domains have the potential to bind DAG. In cells, the isolated C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha co-localize with membranes and relocalize in response to DAG, whereas the C1 domains of RasGRP2 and RasGRP4beta do not. Only the C1 domains of RasGRP1, RasGRP3 and RasGRP4alpha recognize DAG as a ligand within phospholipid vesicles and do so with differential affinities. Other lipid second messengers were screened as ligands for RasGRP C1 domains, but none was found to serve as an alternative to DAG. All of the RasGRP C1 domains bound to vesicles which contained a high concentration of anionic phospholipids, indicating that this could provide a DAG-independent mechanism for membrane binding by C1 domains. This concept was supported by demonstrating that the C1 domain of RasGRP2 could functionally replace the membrane-binding role of the C1 domain within RasGRP1, despite the inability of the RasGRP2 C1 domain to bind DAG. The RasGRP4beta C1 domain was non-functional when inserted into either RasGRP1 or RasGRP4, implying that the alternative splicing which produces this C1 domain eliminates its contribution to membrane binding.  相似文献   

8.
We developed a new (to our knowledge) protocol to generate giant unilamellar vesicles (GUVs) composed of mixtures of single lipopolysaccharide (LPS) species and Escherichia coli polar lipid extracts. Four different LPSs that differed in the size of the polar headgroup (i.e., LPS smooth > LPS-Ra > LPS-Rc > LPS-Rd) were selected to generate GUVs composed of different LPS/E. coli polar lipid mixtures. Our procedure consists of two main steps: 1), generation and purification of oligolamellar liposomes containing LPSs; and 2), electroformation of GUVs using the LPS-containing oligolamellar vesicles at physiological salt and pH conditions. Analysis of LPS incorporation into the membrane models (both oligolamellar vesicles and GUVs) shows that the final concentration of LPS is lower than that expected from the initial E. coli lipids/LPS mixture. In particular, our protocol allows incorporation of no more than 15 mol % for LPS-smooth and LPS-Ra, and up to 25 mol % for LPS-Rc and LPS-Rd (with respect to total lipids). We used the GUVs to evaluate the impact of different LPS species on the lateral structure of the host membrane (i.e., E. coli polar lipid extract). Rhodamine-DPPE-labeled GUVs show the presence of elongated micrometer-sized lipid domains for GUVs containing either LPS-Rc or LPS-Rd above 10 mol %. Laurdan GP images confirm this finding and show that this particular lateral scenario corresponds to the coexistence of fluid disordered and gel (LPS-enriched)-like micron-sized domains, in similarity to what is observed when LPS is replaced with lipid A. For LPSs containing the more bulky polar headgroup (i.e., LPS-smooth and LPS-Ra), an absence of micrometer-sized domains is observed for all LPS concentrations explored in the GUVs (up to ∼15 mol %). However, fluorescence correlation spectroscopy (using fluorescently labeled LPS) and Laurdan GP experiments in these microscopically homogeneous membranes suggests the presence of LPS clusters with dimensions below our microscope's resolution (∼380 nm radial). Our results indicate that LPSs can cluster into gel-like domains in these bacterial model membranes, and that the size of these domains depends on the chemical structure and concentration of the LPSs.  相似文献   

9.
Li Z  Blissard GW 《Journal of virology》2008,82(7):3329-3341
GP64, the major envelope glycoprotein of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) budded virion, is important for host cell receptor binding and mediates low-pH-triggered membrane fusion during entry by endocytosis. In the current study, we examined the functional role of the AcMNPV GP64 transmembrane (TM) domain by replacing the 23-amino-acid GP64 TM domain with corresponding TM domain sequences from a range of viral and cellular type I membrane proteins, including Orgyia pseudotsugata MNPV (OpMNPV) GP64 and F, thogotovirus GP75, Lymantria dispar MNPV (LdMNPV) F, human immunodeficiency virus type 1 (HIV-1) GP41, human CD4 and glycophorin A (GpA), and influenza virus hemagglutinin (HA), and with a glycosylphosphatidylinositol (GPI) anchor addition sequence. In transient expression experiments with Sf9 cells, chimeric GP64 proteins containing either a GPI anchor or TM domains from LdMNPV F or HIV-1 GP41 failed to localize to the cell surface and thus appear to be incompatible with either GP64 structure or cell transport. All of the mutant constructs detected at the cell surface mediated hemifusion (outer leaflet merger) upon low-pH treatment, but only those containing TM domains from CD4, GpA, OpMNPV GP64, and thogotovirus GP75 mediated pore formation and complete membrane fusion activity. This supports a model in which partial fusion (hemifusion) proceeds by a mechanism that is independent of the TM domain and the TM domain participates in the enlargement or expansion of fusion pores after hemifusion. GP64 proteins containing heterologous TM domains mediated virion budding with dramatically differing levels of efficiency. In addition, chimeric GP64 proteins containing TM domains from CD4, GpA, HA, and OpMNPV F were incorporated into budded virions but were unable to rescue the infectivity of a gp64 null virus, whereas those with TM domains from OpMNPV GP64 and thogotovirus GP75 rescued infectivity. These results show that in addition to its basic role in membrane anchoring, the GP64 TM domain is critically important for GP64 trafficking, membrane fusion, virion budding, and virus infectivity. These critical functions were replaced only by TM domains from related viral membrane proteins.  相似文献   

10.
Bovine granulosa cells were disrupted by nitrogen cavitation and the resulting membrane vesicles were isolated by centrifugation using a self-generating Percoll gradient. Transmission electron microscopy and marker enzyme assays revealed a highly enriched preparation of plasma membrane vesicles with little contamination from intracellular organelles. The membranes were examined for their ability to bind [3H]heparin under a variety of physical conditions. Binding was dependent largely on electrostatic interactions which were sensitive to alterations in the ionic strength and pH of the medium. Optimal binding was obtained in the absence of added salt and at pH 6.5 but reduced by 50% at 150 mM-NaCl or at pH values above 7.5. Heparin binding to the membranes was abolished by a 1-h pretreatment with chymotrypsin, plasmin, pronase or trypsin. Detergent treatment of the membranes had various effects, depending on the ionic characteristics of the detergents used. Sodium dodecyl sulphate-polyacrylamide gels of plasma membrane proteins revealed a complex pattern of polypeptides with Mr of 10,000-120,000. Autoradiographic analysis of plasma membrane proteins on Western blots labelled with 125I-labelled heparin revealed 3 major heparin-binding proteins with molecular weights of 14,000-16,000. These studies report a new method of rapidly obtaining purified membranes from a limited population of granulosa cells. The characterization of the binding domains as membrane-associated proteins provides opportunities for numerous additional studies. Detergent solubilization of the membranes without appreciable loss in binding activity should simplify attempts to purify the binding proteins. Further analysis of the interactions of these molecules with native follicular fluid GAGs at various stages of granulosa cell development should provide useful insights into the role of complex carbohydrates in follicular maturation.  相似文献   

11.
The effects of temperature and pH on Laurdan (6-lauroyl-2-(dimethylamino)naphthalene) fluorescence intensity images of giant unilamellar vesicles (GUVs) ( approximately 20-150 microm in diameter) composed of the polar lipid fraction E (PLFE) from the thermoacidophilic archaebacteria Sulfolobus acidocaldarius have been studied using two-photon excitation. PLFE GUVs made by the electroformation method were stable and well suited for microscopy studies. The generalized polarization (GP) of Laurdan fluorescence in the center cross section of the vesicles has been determined as a function of temperature at pH 7.23 and pH 2.68. At all of the temperatures and pHs examined, the GP values are low (below or close to 0), and the GP histograms show a broad distribution width (> 0.3). When excited with light polarized in the y direction, Laurdan fluorescence in the center cross section of the PLFE GUVs exhibits a photoselection effect showing much higher intensities in the x direction of the vesicles, a result opposite that previously obtained on monopolar diester phospholipids. This result indicates that the chromophore of Laurdan in PLFE GUVs is aligned parallel to the membrane surface. The x direction photoselection effect and the low GP values lead us to further propose that the Laurdan chromophore resides in the polar headgroup region of the PLFE liposomes, while the lauroyl tail inserts into the hydrocarbon core of the membrane. This unusual L-shaped disposition is presumably caused by the unique lipid structures and by the rigid and tight membrane packing in PLFE liposomes. The GP exhibited, at both pH values, a small but abrupt decrease near 50 degrees C, suggesting a conformational change in the polar headgroups of PLFE. This transition temperature fully agrees with the d-spacing data recently measured by small-angle x-ray diffraction and with the pyrene-labeled phosphatidylcholine and perylene fluorescence data previously obtained from PLFE multilamellar vesicles. Interestingly, the two-photon Laurdan fluorescence images showed snowflake-like lipid domains in PLFE GUVs at pH 7.23 and low temperatures (<20 degrees C in the cooling scan and <24 degrees C in the heating scan). These domains, attributable to lipid lateral separation, were stable and laterally immobile at low temperatures (<23 degrees C), again suggesting tight membrane packing in the PLFE GUVs.  相似文献   

12.
The gamma(1)-peptide is a 21-residue lipid-binding domain from the non-enveloped Flock House virus (FHV). Unlike enveloped viruses, the entry of non-enveloped viruses into cells is believed to occur without membrane fusion. In this study, we performed NMR experiments to establish the solution structure of a membrane-binding peptide from a small non-enveloped icosahedral virus. The three-dimensional structure of the FHV gamma(1)-domain was determined at pH 6.5 and 4.0 in a hydrophobic environment. The secondary and tertiary structures were evaluated in the context of the capacity of the peptide for permeabilizing membrane vesicles of different lipid composition, as measured by fluorescence assays. At both pH values, the peptide has a kinked structure, similar to the fusion domain from the enveloped viruses. The secondary structure was similar in three different hydrophobic environments as follows: water/trifluoroethanol, SDS, and membrane vesicles of different compositions. The ability of the peptide to induce vesicle leakage was highly dependent on the membrane composition. Although the gamma-peptide shares some structural properties to fusion domains of enveloped viruses, it did not induce membrane fusion. Our results suggest that small protein components such as the gamma-peptide in nodaviruses (such as FHV) and VP4 in picornaviruses have a crucial role in conducting nucleic acids through cellular membranes and that their structures resemble the fusion domains of membrane proteins from enveloped viruses.  相似文献   

13.
The distribution of nicotinic acetylcholine receptor (AChR) clusters at the cell membrane was studied in CHO-K1/A5 cells using fluorescence microscopy. Di-4-ANEPPDHQ, a fluorescent probe that differentiates between liquid-ordered (Lo) and liquid-disordered (Ld) phases in model membranes, was used in combination with monoclonal anti-AChR antibody labeling of live cells, which induces AChR clustering. The so-called generalized polarization (GP) of di-4-ANEPPDHQ was measured in regions of the cell-surface membrane associated with or devoid of antibody-induced AChR clusters, respectively. AChR clusters were almost equally distributed between Lo and Ld domains, independently of receptor surface levels and agonist (carbamoylcholine and nicotine) or antagonist (α-bungarotoxin) binding. Cholesterol depletion diminished the cell membrane mean di-4-ANEPPDHQ GP and the number of AChR clusters associated with Ld membrane domains increased concomitantly. Depolymerization of the filamentous actin cytoskeleton by Latrunculin A had the opposite effect, with more AChR clusters associated with Lo domains. AChR internalized via small vesicles having lower GP and lower cholesterol content than the surface membrane. Upon cholesterol depletion, only 12% of the AChR-containing vesicles costained with the fluorescent cholesterol analog fPEG-cholesterol, i.e., AChR endocytosis was essentially dissociated from that of cholesterol. In conclusion, the distribution of AChR submicron-sized clusters at the cell membrane appears to be regulated by cholesterol content and cytoskeleton integrity.  相似文献   

14.
The C2 domain is a Ca(2+)-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show a wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. To understand how C2 domains show diverse lipid selectivity and how this functional diversity affects their subcellular targeting behaviors, we measured the binding of the C2 domains of group IVa cytosolic phospholipase A(2) (cPLA(2)) and protein kinase C-alpha (PKC-alpha) to vesicles that model cell membranes they are targeted to, and we monitored their subcellular targeting in living cells. The surface plasmon resonance analysis indicates that the PKC-alpha C2 domain strongly prefers the cytoplasmic plasma membrane mimic to the nuclear membrane mimic due to high phosphatidylserine content in the former and that Asn(189) plays a key role in this specificity. In contrast, the cPLA(2) C2 domain has specificity for the nuclear membrane mimic over the cytoplasmic plasma membrane mimic due to high phosphatidylcholine content in the former and aromatic and hydrophobic residues in the calcium binding loops of the cPLA(2) C2 domain are important for its lipid specificity. The subcellular localization of enhanced green fluorescent protein-tagged C2 domains and mutants transfected into HEK293 cells showed that the subcellular localization of the C2 domains is consistent with their lipid specificity and could be tailored by altering their in vitro lipid specificity. The relative cell membrane translocation rate of selected C2 domains was also consistent with their relative affinity for model membranes. Together, these results suggest that biophysical principles that govern the in vitro membrane binding of C2 domains can account for most of their subcellular targeting properties.  相似文献   

15.
Several fluorescence techniques have been used to estimate the depth, in the membrane, of the endogenous tryptophans of membrane-bound proteins. We reported recently the use of phosphatidylcholines specifically brominated at different positions of the sn-2 acyl chain for this purpose (Markello, T., Zlotnick, A., Everett, J., Tennyson, J., and Holloway, P. W. (1985) Biochemistry 24, 2895-2901). The membranes made from these brominated lipids will have the brominated lipid in both monolayers, and so the estimated depth of the fluorophore will be relative to either the inner or outer surface of the membrane, but will not distinguish between these two extremes. To differentiate between these two models vesicles have now been made with an asymmetric distribution of brominated lipid, by use of phosphatidylcholine exchange protein. The asymmetric vesicles were isolated by virtue of their density, and their asymmetry was established by addition of an amphipathic fluorescent carbazole compound. With these vesicles it was shown that the tryptophan in the membrane-binding domain of cytochrome b5 which is quenched by bromolipid is located 0.7 nm below the outer surface of the membrane vesicles, rather than 0.7 nm from the inner surface.  相似文献   

16.
To understand the role of sphingomyelinase (SMase) in the function of biological membranes, we have investigated the effect of conversion of sphingomyelin (SM) to ceramide (Cer) on the assembly of domains in giant unilamellar vesicles (GUVs). The GUVs were prepared from mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-palmitoly-D-erythro-sphingosine (C16Cer), N-palmitoyl-D-erythro-sphingosylphosphorylcholine (C16SM) and cholesterol. The amounts of DOPC, sum of C16Cer and C16SM, and cholesterol were kept constant (the ratio of these four lipids is shown as 1:X:1-X:1 (molar ratio), i.e., X is C16Cer/(C16Cer+C16SM)). Shape and distribution of domains formed in the GUVs were monitored by a fluorescent lipid, Texas Red 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (0.1 mol%). In GUVs containing low C16Cer (X=0 and 0.25), round-shaped domains labeled by the fluorescent lipid were present, suggesting coexistence of liquid-ordered and disordered domains. In GUVs containing intermediate Cer concentration (X=0.5), the fluorescent domain covered most of GUV surface, which was surrounded by gel-like domains. Differential scanning calorimetry of multilamellar vesicles prepared in the presence of higher Cer concentration (X>or=0.5) suggested existence of a Cer-enriched gel phase. Video microscopy showed that the enzymatic conversion of SM to Cer caused rapid change in the domain structure: several minutes after the SMase addition, the fluorescent region spread over the GUV surface, within which regions with darker contrast existed. Image-based measurement of generalized polarization (GP) of 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan), which is related to the acyl chain ordering of the lipids, was performed. Before the SMase treatment domains with high (0.65) and low (below 0.4) GP values coexisted, presumably reflecting the liquid-ordered and disordered domains; after the SMase treatment regions with intermediate GP values (0.5) and smaller regions with higher GP values (0.65) were present. Generation of Cer thus caused a phase transition from liquid-ordered and disordered phases to a gel and liquid phase.  相似文献   

17.
Lack of expression of glycoprotein (GP) Ib-IX-V complex in platelets often results from mutations in its three subunits: GP Ibalpha, GP Ibbeta, or GP IX. The requirement of all three subunits in the efficient surface expression of the receptor complex has been reproduced in Chinese hamster ovary cells. Here, we probed the role of the transmembrane domains in expression of the GP Ib-IX complex and potential interactions between these domains. Replacing the transmembrane domains of either GP Ibalpha or GP Ibbeta, but not that of GP IX, with unrelated sequences markedly diminished surface expression of the GP Ib-IX complex in transiently transfected Chinese hamster ovary cells. Replacement of the Ibbeta transmembrane domain produced the largest effect. Furthermore, several single-site mutations in the Ibbeta transmembrane domain were found to significantly decrease overall expression as well as surface expression of GP Ibalpha, probably by perturbing the interaction between the Ibalpha and Ibbeta transmembrane domains and in turn reducing the stability of GP Ibalpha in the cell. Mutations S503V and S503L in the Ibalpha transmembrane domain partly reversed the expression-decreasing effect of mutation H139L, but not the others, in the Ibbeta transmembrane domain, suggesting a specific interaction between these two polar residues. Together, our results have demonstrated the importance of the Ibbeta transmembrane domain, through its interaction with the Ibalpha counterpart, to the proper assembly and efficient surface expression of the GP Ib-IX complex.  相似文献   

18.
The recognition and removal of apoptotic cells is critical to development, tissue homeostasis, and the resolution of inflammation. Many studies have shown that phagocytosis is regulated by signaling mechanisms that involve distinct ligand-receptor interactions that drive the engulfment of apoptotic cells. Studies from our laboratory have shown that the plasma protein beta-2-glycoprotein 1 (beta2GP1), a member of the short consensus repeat superfamily, binds phosphatidylserine-containing vesicles and apoptotic cells and promotes their bridging and subsequent engulfment by phagocytes. The phagocyte receptor for the protein/apoptotic cell complex, however, is unknown. Here we report that a member of the low density lipoprotein receptor-related protein family on phagocytes binds and facilitates engulfment of beta2GP1-phosphatidylserine and beta2GP1-apoptotic cell complexes. Using recombinant beta2GP1, we also show that beta2GP1-dependent uptake is mediated by bridging of the target cell to the phagocyte through the protein C- and N-terminal domains, respectively.  相似文献   

19.
C2 domains are conserved protein modules in many eukaryotic signaling proteins, including the protein kinase (PKCs). The C2 domains of classical PKCs bind to membranes in a Ca(2+)-dependent manner and thereby act as cellular Ca(2+) effectors. Recent findings suggest that the C2 domain of PKCalpha interacts specifically with phosphatidylinositols 4,5-bisphosphate (PtdIns(4,5)P(2)) through its lysine rich cluster, for which it shows higher affinity than for POPS. In this work, we compared the three C2 domains of classical PKCs. Isothermal titration calorimetry revealed that the C2 domains of PKCalpha and beta display a greater capacity to bind to PtdIns(4,5)P(2)-containing vesicles than the C2 domain of PKCgamma. Comparative studies using lipid vesicles containing both POPS and PtdIns(4,5)P(2) as ligands revealed that the domains behave as PtdIns(4,5)P(2)-binding modules rather than as POPS-binding modules, suggesting that the presence of the phosphoinositide in membranes increases the affinity of each domain. When the magnitude of PtdIns(4,5)P(2) binding was compared with that of other polyphosphate phosphatidylinositols, it was seen to be greater in both PKCbeta- and PKCgamma-C2 domains. The concentration of Ca(2+) required to bind to membranes was seen to be lower in the presence of PtdIns(4,5)P(2) for all C2 domains, especially PKCalpha. In vivo experiments using differentiated PC12 cells transfected with each C2 domain fused to ECFP and stimulated with ATP demonstrated that, at limiting intracellular concentration of Ca(2+), the three C2 domains translocate to the plasma membrane at very similar rates. However, the plasma membrane dissociation event differed in each case, PKCalpha persisting for the longest time in the plasma membrane, followed by PKCgamma and, finally, PKCbeta, which probably reflects the different levels of Ca(2+) needed by each domain and their different affinities for PtdIns(4,5)P(2).  相似文献   

20.
In recent years, giant unilamellar vesicles (GUVs) have become objects of intense scrutiny by chemists, biologists, and physicists who are interested in the many aspects of biological membranes. In particular, this "cell size" model system allows direct visualization of particular membrane-related phenomena at the level of single vesicles using fluorescence microscopy-related techniques. However, this model system lacks two relevant features with respect to biological membranes: 1), the conventional preparation of GUVs currently requires very low salt concentration, thus precluding experimentation under physiological conditions, and 2), the model system lacks membrane compositional asymmetry. Here we show for first time that GUVs can be prepared using a new protocol based on the electroformation method either from native membranes or organic lipid mixtures at physiological ionic strength. Additionally, for the GUVs composed of native membranes, we show that membrane proteins and glycosphingolipids preserve their natural orientation after electroformation. We anticipate our result to be important to revisit a vast variety of findings performed with GUVs under low- or no-salt conditions. These studies, which include results on artificial cell assembly, membrane mechanical properties, lipid domain formation, partition of membrane proteins into lipid domains, DNA-lipid interactions, and activity of interfacial enzymes, are likely to be affected by the amount of salt present in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号