首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The findings of molecular biology concerning biosynthesis of macromolecules are applied to the deduction of the kinetics of mass and volume growth in individual cells between divisions. The time course of increase of all macromolecules and of the total dry mass is found to be linear, in agreement with the available data; the corresponding volume growth curves are either quadratic, or exponential with a linear asymptote, depending on the relative contributions of metabolism and transport to cell water. A self-limiting mass and volume kinetics is derived by including repression among the other molecular mechanisms. Publication No. 825 of the Division of Basic Health Sciences.  相似文献   

2.
S B Zimmerman  S O Trach 《Biopolymers》1990,30(7-8):703-718
Partition parameters of several proteins and other macromolecules are measured in an aqueous two-phase liquid system containing polyethylene glycol and phosphate buffer. Distribution of macromolecules is a function of the relative volume excluded to the macromolecules in the two phases. A simple model with no adjustable parameters yields covolumes of the macromolecules with the polyethylene glycol. Covolumes are used to estimate effective molecular volumes and the magnitudes of excluded volume effects. The same approach is applied to mixtures of macromolecules.  相似文献   

3.
The very high concentration of macromolecules within cells can potentially have an overwhelming effect on the thermodynamic activity of cellular components because of excluded volume effects. To estimate the magnitudes of such effects, we have made an experimental study of the cytoplasm of Escherichia coli. Parameters from cells and cell extracts are used to calculate approximate activity coefficients for cytoplasmic conditions. These calculations require a representation of the sizes, concentrations and effective specific volumes of the macromolecules in the extracts. Macromolecule size representations are obtained either by applying a two-phase distribution assay to define a related homogeneous solution or by using the molecular mass distribution of macromolecules from gel filtration. Macromolecule concentrations in cytoplasm are obtained from analyses of extracts by applying a correction for the dilution that occurs during extraction. That factor is determined from experiments based upon the known impermeability of the cytoplasmic volume to sucrose in intact E. coli. Macromolecule concentrations in the cytoplasm of E. coli in either exponential or stationary growth phase are estimated to be approximately 0.3 to 0.4 g/ml. Macromolecule specific volumes are inferred from the composition of close-packed precipitates induced by polyethylene glycol. Several well-characterized proteins which bind to DNA (lac repressor, RNA polymerase) are extremely sensitive to changes in salt concentration in studies in vitro, but are insensitive in studies in vivo. Application of the activity coefficients from the present work indicates that at least part of this discrepancy arises from the difference in excluded volumes in these studies. Applications of the activity coefficients to solubility or to association reactions are also discussed, as are changes associated with cell growth phase and osmotic or other effects. The use of solutions of purified macromolecules that emulate the crowding conditions inferred for cytoplasm is discussed.  相似文献   

4.
A new method for the direct molecular mass determination from sedimentation velocity experiments is presented. It is based on a nonlinear least squares fitting procedure of the concentration profiles and simultaneous estimation of the sedimentation and diffusion coefficients using approximate solutions of the Lamm equation. A computer program, LAMM, was written by using five different model functions derived by Fujita (1962, 1975) to describe the sedimentation of macromolecules during centrifugation. To compare the usefulness of these equations for the analysis of hydrodynamic results, the approach was tested on data sets of Claverie simulations as well as experimental curves of some proteins. A modification for one of the model functions is suggested, leading to more reliable sedimentation and diffusion coefficients estimated by the fitting procedure. The method seems useful for the rapid molecular mass determination of proteins larger than 10 kDa. One of the equations of the Archibald type is also suitable for compounds of low molecular mass, probably less than 10 kDa, because this model function requires neither the plateau region nor a meniscus free of solute.  相似文献   

5.
Shedding, the release of cell surface proteins by regulated proteolysis, is a general cellular response to injury and is responsible for generating numerous bioactive molecules including growth factors and cytokines. The purpose of our work is to determine whether low doses of low-linear energy transfer (LET) radiation induce shedding of bioactive molecules. Using a mass spectrometry-based global proteomics method, we tested this hypothesis by analyzing for shed proteins in medium from irradiated human mammary epithelial cells (HMEC). Several hundred proteins were identified, including transforming growth factor beta (TGFB); however, no changes in protein abundances attributable to radiation exposure, based on immunoblotting methods, were observed. These results demonstrate that our proteomic-based approach has the sensitivity to identify the kinds of proteins believed to be released after low-dose radiation exposure but that improvements in mass spectrometry-based protein quantification will be required to detect the small changes in abundance associated with this type of insult.  相似文献   

6.
2002年诺贝尔化学奖授予了质谱和核磁共振领域的三位科学家以表彰他们对生物大分子鉴定及结构分析方法做出的贡献.其中两位科学家J.B.Fenn和K.Tanaka分别发展了生物大分子质谱分析的软解吸电离方法;另一科学家K.Wüthrich则将核磁共振技术成功地应用于生物大分子如蛋白质的溶液三维结构测定.他们的研究成果已使质谱和核磁共振技术成为生物大分子强有力的研究手段,极大地促进了生物大分子的研究进程,必将对整个生命科学研究产生深远的影响.  相似文献   

7.
Daly MJ 《DNA Repair》2012,11(1):12-21
A founding concept of radiobiology that deals with X-rays, γ-rays and ultraviolet light is that radiation indiscriminately damages cellular macromolecules. Mounting experimental evidence does not fit into this theoretical framework. Whereas DNA lesion-yields in cells exposed to a given dose and type of radiation appear to be fixed, protein lesion-yields are highly variable. Extremely radiation resistant bacteria such as Deinococcus radiodurans have evolved extraordinarily efficient antioxidant chemical defenses which specifically protect proteins and the functions they catalyze. In diverse prokaryotes, the lethal effects of radiation appear to be governed by oxidative protein damage, which inactivates enzymes including those needed to repair and replicate DNA. These findings offer fresh insight into the molecular mechanisms of radiation resistance and present themselves as new opportunities to study and control oxidative stress in eukaryotes, including mammalian cells and their cancer cell counterparts.  相似文献   

8.
Molecular mimicry and molecular symbiosis are proposed to be the main factors controlling thermodynamic activity and phase behavior of macromolecular compounds in foods, beverages, and chyme. Molecular mimicry implies a chemical resemblance of hydrophilic surfaces of globular proteins with their chemical information hidden in the hydrophobic interior and low excluded volume of the globules. The molecular mimicry contributes to the efficiency of enzymes. Molecular symbiosis means that interactions attraction or repulsion) between biopolymer molecules greatly differing in conformation (globular and rod-like) favor the biological efficiency of one of them at least. The symbiosis is based on excluded volume effects of macromolecules in mixed solutions. Association-dissociation of rod-like macromolecules can dictate thermodynamic activity of an enzyme in the mixed solution. Thermodynamic incompatibility is typical of food macromolecules, whose denaturation, association, complexing, and chemical modification reduce their mimicry and co-solubility. Foods are normally phase-separated systems with highly volume-occupied phases. The phase-separated nature of the gel-like chyme is important to the efficiency of digestion of mixed diets. Phase separation of biopolymer mixtures, presumably, underlies mechanisms of nonspecific immune defense. The phase behavior-functionality relationships is presented through concrete examples of some foods (such as milk products, low-fat spreads, ice cream, wheat and rye doughs, thermoplastic extrudates, etc.), beverages (tea and coffee), and chyme.  相似文献   

9.
Macromolecular diffusion in crowded solutions.   总被引:6,自引:1,他引:5       下载免费PDF全文
J Han  J Herzfeld 《Biophysical journal》1993,65(3):1155-1161
The effects of crowding on the self or tracer diffusion of macromolecules in concentrated solutions is an important but difficult problem, for which, so far, there has been no rigorous treatment. Muramatsu and Minton suggested a simple model to calculate the diffusion coefficient of a hard sphere among other hard spheres. In this treatment, scaled particle theory is used to evaluate the probability that the target volume for a step in a random walk is free of any macromolecules. We have improved this approach by using a more appropriate target volume which also allows the calculation to be extended to the diffusion of a hard sphere among hard spherocylinders. We conclude that, to the extent that proteins can be approximated as hard particles, the hindrance of globular proteins by other proteins is reduced when the background proteins aggregate (the more so the greater the decrease in particle surface area), the hindrance due to rod-shaped background particles is reduced slightly if the rod-like particles are aligned, and the anisotropy of the diffusion of soluble proteins among cytoskeletal proteins will normally be small.  相似文献   

10.
The intracellular environment contains high concentrations of macromolecules occupying up to 30% of the total cellular volume. Presence of these macromolecules decreases the effective volume available for the proteins in the cell and thus increases the effective protein concentrations and stabilizes the compact protein conformations. Macromolecular crowding created by various macromolecules such as proteins, nucleic acids, and carbohydrates has been shown to have a significant effect on a variety of cellular processes including protein aggregation. Most studies of macromolecular crowding have used neutral, flexible polysaccharides that function primarily via excluded volume effect as model crowding agents. Here we have examined the effects of more rigid polysaccharides on protein structure and aggregation. Our results indicate that rigid and flexible polysaccharides influence protein aggregation via different mechanisms and suggest that, in addition to excluded volume effect, changes in solution viscosity and non-specific protein–polymer interactions influence the structure and dynamics of proteins in crowded environments.  相似文献   

11.
荧光能量转移(FRET)是指两个携带不同荧光基团的大分子在相互间距离足够近时(10~100A)所发生的能量非放射性地由一个荧光基团向另一个荧光基团转移的现象。结合绿色荧光蛋白的发现,FRET技术可用于检测生物大分子中不同亚基的位置和生物大分子间的相互作用。近年来,FRET技术在生物学研究中的突破性进展是在活体细胞中实时监测生物大分子之间的相互作用。本文就绿色荧光蛋白的发现,FRET技术的原理、研究进展和应用前景作简要综述。  相似文献   

12.
The upper limit of Saccharomyces cerevisiae cell wall permeability is such that only molecules with a mass not greater than 2-3 kDa can pass across the cell wall. However, proteins with a much higher molecular mass are exported into the cultural broth when the organism is cultivated in a liquid medium with peptone. Under certain conditions, exogenous proteins interact with the cytoplasmic membrane. These as well as some other findings imply that the cell wall may have microplots with an anomalous permeability, via which the regulated exchange of macromolecules is realized between the intracellular and outer media.  相似文献   

13.
ABSTRACT:?

Molecular mimicry and molecular symbiosis are proposed to be the main factors controlling thermodynamic activity and phase behavior of macromolecular compounds in foods, beverages, and chyme. Molecular mimicry implies a chemical resemblance of hydrophilic surfaces of globular proteins with their chemical information hidden in the hydrophobic interior and low excluded volume of the globules. The molecular mimicry contributes to the efficiency of enzymes. Molecular symbiosis means that interactions attraction or repulsion) between biopolymer molecules greatly differing in conformation (globular and rod-like) favor the biological efficiency of one of them at least. The symbiosis is based on excluded volume effects of macromolecules in mixed solutions. Association-dissociation of rod-like macromolecules can dictate thermodynamic activity of an enzyme in the mixed solution. Thermodynamic incompatibility is typical of food macromolecules, whose denaturation, association, complexing, and chemical modification reduce their mimicry and co-solubility. Foods are normally phase-separated systems with highly volume-occupied phases. The phase-separated nature of the gel-like chyme is important to the efficiency of digestion of mixed diets. Phase separation of biopolymer mixtures, presumably, underlies mechanisms of nonspecific immune defense. The phase behavior-functionality relationships is presented through concrete examples of some foods (such as milk products, low-fat spreads, ice cream, wheat and rye doughs, thermoplastic extrudates, etc.), beverages (tea and coffee), and chyme.  相似文献   

14.
15.
Macromolecular crowding: obvious but underappreciated   总被引:31,自引:0,他引:31  
Biological macromolecules evolve and function within intracellular environments that are crowded with other macromolecules. Crowding results in surprisingly large quantitative effects on both the rates and the equilibria of interactions involving macromolecules, but such interactions are commonly studied outside the cell in uncrowded buffers. The addition of high concentrations of natural and synthetic macromolecules to such buffers enables crowding to be mimicked in vitro, and should be encouraged as a routine variable to study. The stimulation of protein aggregation by crowding might account for the existence of molecular chaperones that combat this effect. Positive results of crowding include enhancing the collapse of polypeptide chains into functional proteins, the assembly of oligomeric structures and the efficiency of action of some molecular chaperones and metabolic pathways.  相似文献   

16.
Shen JR  Kamiya N 《Biochemistry》2000,39(48):14739-14744
A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus. The PSII complex in the crystals contained the D1/D2 reaction center subunits, CP47 and CP43 (two chlorophyll-binding core antenna proteins of photosystem II), cytochrome b-559 alpha- and beta-subunits, several low molecular weight subunits, and three extrinsic proteins, that is, 33 and 12 kDa proteins and cytochrome c-550. The PSII complex also retained a high rate of oxygen evolution. The apparent molecular mass of the PSII in the crystals was determined to be 580 kDa by gel filtration chromatography, indicating that the PSII crystallized is a dimer. The crystals diffracted to a maximum resolution of 3.5 A at a cryogenic temperature using X-rays from a synchrotron radiation source, SPring-8. The crystals belonged to an orthorhombic system, and the space group was P2(1)2(1)2(1) with unit cell dimensions of a = 129.7 A, b = 226.5 A, and c = 307.8 A. Each asymmetric unit contained one PSII dimer, which gave rise to a specific volume (V(M)) of 3.6 A(3)/Da based on the calculated molecular mass of 310 kDa for a PSII monomer and an estimated solvent content of 66%. Multiple data sets of native crystals have been collected and processed to 4.0 A, indicating that our crystals are suitable for structure analysis at this resolution.  相似文献   

17.
Matrix-assisted laser desorption with concomitant ionization, in combination with a linear time-of-flight mass spectrometer, was used to analyze underivatized and hard-to-solubilize surface layer proteins and glycoproteins by depositing them on top of a microcrystalline layer of the matrix alpha-cyano-4-hydroxycinnamic acid. Use of this special sample preparation technique allowed the first successful desorption-ionization of intact surface layer proteins and accurate determination of their molecular weights by mass spectrometry. The molecular mass of the monomeric subunit of the major surface layer protein isolated from Clostridium thermosaccharolyticum E207-71 was determined to be 75,621 +/- 81 Da. The obtainable mass accuracy of the technique is conservatively considered to be within +/- 0.2%. This result deviates from that given by sodium dodecyl sulfate-polyacrylamide gel electrophoresis by approximately 7.4 kDa because this method is strongly affected and biased by the three-dimensional structure of this type of surface protein. With the apparent advantages of unsurpassed mass accuracy, low dependence on the physicochemical properties of the surface layer proteins, and high sensitivity, it can be concluded that a linear time-of-flight instrument combined with UV matrix-assisted laser desorption with concomitant ionization is better suited for molecular weight determination than is gel electrophoresis.  相似文献   

18.
Hamster oviducts in culture incorporate [35S]-methionine into secretory proteins. One of these proteins is immunoprecipitated by a monoclonal antibody specific to an antigen found in oviductal oocytes but not in ovarian oocytes. This antigen, called oviductin, is progressively added to the oocyte during its transit through the oviduct. Oviductin migrates as a diffuse band with a molecular mass between 160 and 250 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. The electrophoretic behavior of this protein suggests the presence of polysaccharide side chains. Chemical deglycosylation causes a decrease in molecular mass and removes the antigenic determinant originally present on the glycoprotein. By using the radiation inactivation method, the molecular mass of the core protein has been found to be approximately 44 kDa. These results indicate that the oviduct is an actual site of synthesis of the oviductin. This glycoprotein contains a high proportion of sugar residues, which account for antigenic determinant recognized by the monoclonal antibody.  相似文献   

19.
Hypertension is one of the major risk factor that underlie a wide range of cardiovascular irregularities which causes functional and metabolic alterations in vascular system and major organs. Nitric oxide is the central regulator of the vascular system and its deficiency leads to increased blood pressure and metabolic alterations in liver. Fourier transform infrared spectroscopy (FTIR) is a vibrational spectroscopic technique that uses infrared radiation to vibrate molecular bonds with in the sample that absorbs it and different samples contain diverse configurations of molecular bonds. Both wavenumber and area of the vibrational spectra can be used to explore the qualitative and quantitative constituent of macromolecules. In this study, we intended to evaluate the protective role of borneol, a natural terpene on liver metabolism in a nitric oxide deficient model of hypertension through interpretation of FTIR spectral information. Results demonstrate that FTIR can successfully indicate the molecular changes that occur in all groups. The over all findings demonstrate that in nitric oxide deficient animal model of hypertension, the liver metabolic program is altered through increasing the structural modification in proteins and triglycerides, and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected by borneol in liver and showed its ability to exert a novel defensive action on hepatic metabolism.  相似文献   

20.
Observing structure,function and assembly of single proteins by AFM   总被引:9,自引:0,他引:9  
Single molecule experiments provide insight into the individuality of biological macromolecules, their unique function, reaction pathways, trajectories and molecular interactions. The exceptional signal-to-noise ratio of the atomic force microscope allows individual proteins to be imaged under physiologically relevant conditions at a lateral resolution of 0.5–1 nm and a vertical resolution of 0.1–0.2 nm. Recently, it has become possible to observe single molecule events using this technique. This capability is reviewed on various water-soluble and membrane proteins. Examples of the observation of function, variability, and assembly of single proteins are discussed. Statistical analysis is important to extend conclusions derived from single molecule experiments to protein species. Such approaches allow the classification of protein conformations and movements. Recent developments of probe microscopy techniques allow simultaneous measurement of multiple signals on individual macromolecules, and greatly extend the range of experiments possible for probing biological systems at the molecular level. Biologists exploring molecular mechanisms will benefit from a burgeoning of scanning probe microscopes and of their future combination with molecular biological experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号