首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
High-throughput DNA sensors capable of detecting single-base mismatches are required for the routine screening of genetic mutations and disease. A new strategy for the electrochemical detection of single-base mismatches in DNA has been developed based upon charge transport through DNA films. Double-helical DNA films on gold surfaces have been prepared and used to detect DNA mismatches electrochemically. The signals obtained from redox-active intercalators bound to DNA-modified gold surfaces display a marked sensitivity to the presence of base mismatches within the immobilized duplexes. Differential mismatch detection was accomplished irrespective of DNA sequence composition and mismatch identity. Single-base changes in sequences hybridized at the electrode surface are also detected accurately. Coupling the redox reactions of intercalated species to electrocatalytic processes in solution considerably increases the sensitivity of this assay. Reporting on the electronic structure of DNA, as opposed to the hybridization energetics of single-stranded oligonucleotides, electrochemical sensors based on charge transport may offer fundamental advantages in both scope and sensitivity.  相似文献   

2.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

3.

Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.

  相似文献   

4.
Nam JM  Jang KJ  Groves JT 《Nature protocols》2007,2(6):1438-1444
The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).  相似文献   

5.
Single-stranded DNA was covalently bound on chip surfaces using two different silanization procedures. The resulting surfaces were characterized by fluorescence and scanning force microscopy using sequence-complementary DNA molecules with labels. Colloidal gold (30 nm) was used as the topographic label. Scanning force microscopy revealed the individual labels on the surface and their distribution. Steps of silane layers or DNA-modified surfaces prepared using an elastomeric mask provided internal controls for comparison of modified with unmodified surfaces.  相似文献   

6.
Rapid growth of available sequence data has made the detection of nucleic acids critical to the development of modern life sciences. Many amplification methods based on gold nanoparticles and endonuclease for sensitive DNA detection have been developed. However, these approaches require specific target sequence for endonuclease recognition, which cannot be fulfilled in all systems. Replacing the restriction enzyme with a nuclease that does not require any specific recognition sequence may offer a universally adaptable system. Here we have developed a novel homogeneous, colorimetric DNA detection method, which consists of Exo III, a linker DNA, and two DNA-modified gold nanoparticles. This system is simple, low-cost, sensitive and selective. By coupling cyclic enzymatic cleavage and gold nanoparticle for signal amplification, our system provides a colorimetric detection limit of 15 pM, which is 3 orders of magnitude more sensitive than that of a general three-component sandwich assay format. Due to the intrinsic property of Exo III, our method shows excellent detection selectivity for single-base discrimination. More importantly, superior to other methods based on nicking and FokI endonuclease, our target sequence-independent platform is generally applicable for DNA sensing. This new approach could be widely applied to sensitive nucleic acids detection.  相似文献   

7.
DNA charge transport chemistry is found to provide a sensitive method for probing protein-dependent changes in DNA structure and enzymatic reactions. Here we describe the development of an electrochemical assay of protein binding to DNA-modified electrodes based upon the detection of associated perturbations in DNA base stacking. Gold electrode surfaces that were modified with loosely packed DNA duplexes, covalently crosslinked to a redox-active intercalator and containing the binding site of the test protein, were constructed. Charge transport through DNA as a function of protein binding was then assayed. Substantial attenuation in current is seen in the presence of the base-flipping enzymes HhaI methylase and uracil DNA glycosylase, as well as with TATA-binding protein. When restriction endonuclease PvuII (R.PvuII) binds to its methylated target, little base-stacking perturbation occurs and little diminution in current flow is observed. Importantly, the kinetics of restriction by R.PvuII of its nonmethylated target is also easily monitored electrochemically. This approach should be generally applicable to assaying protein--DNA interactions and reactions on surfaces.  相似文献   

8.
A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time for high affinity binders (Kd < 1 nM, koff < 0.01 s−1) to be collected under equilibrium conditions at low pM concentrations. The mismatch discrimination obtained from the residence time data was shown to be concentration and temperature independent in intervals of 1–100 pM and 23–46°C, respectively. This suggests the method as a robust means for detection of point mutations at low target concentrations in, for example, single nucleotide polymorphism (SNP) analysis.  相似文献   

9.
A novel hepatitis B virus (HBV) DNA biosensor was developed by immobilizing covalently single-stranded HBV DNA fragments to a gold electrode surface via carboxylate ester to link the 3(')-hydroxy end of the DNA with the carboxyl of the thioglycolic acid (TGA) monolayer. A short-stranded HBV DNA fragment (181bp) of known sequence was obtained and amplified by PCR. The surface hybridization of the immobilized single-stranded HBV DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using [Os(bpy)(2)Cl(2)](+) as a novel electroactive indicator. The formation of double-stranded HBV DNA on the gold electrode resulted in a great increase in the peak currents of [Os(bpy)(2)Cl(2)](+) in comparison with those obtained at a bare or single-stranded HBV DNA-modified electrode. The mismatching experiment indicated that the surface hybridization was specific. The difference between the responses of [Os(bpy)(2)Cl(2)](+) at single-stranded and double-stranded DNA/TGA gold electrodes suggested that the label-free hybridization biosensor could be conveniently used to monitor DNA hybridization with a high sensitivity. X-ray photoelectron spectrometry technique has been employed to characterize the immobilization of single-stranded HBV DNA on a gold surface.  相似文献   

10.
The electrochemiluminescence (ECL) behavior of ruthenium complex/tripropylamine (TPA) systems at DNA-modified gold electrode was studied to understand the possible mechanism and to develop new detection platforms. DNA strand, especially double-stranded DNA (ds-DNA), can preconcentrate TPA and acts as the acceptor of the protons released from TPAH(+), therefore the improved ECL emission and the low potential ECL were observed. The intercalation of Ru(phen)(3)(2+) into ds-DNA was confirmed to be a sensitive and label-free DNA-related detection platform. The above results were validated by the analysis of lysozyme using anti-lysozyme aptamer-modified electrode. This work opens a new field by the use of DNA-modified electrode to develop novel sensing platforms, such as low potential ECL biosensors and Ru(phen)(3)(2+) intercalation-based ECL biosensors.  相似文献   

11.
Extremely stable, peptide-capped gold nanoparticles with two different biomolecular recognition motifs expressed on their surface have been prepared, and their specific and selective binding to artificial, DNA-modified target particles and to DNA and protein microarrays has been demonstrated. Stabilization and biofunctionalization has been achieved in a single preparative step starting with citrate-stabilized gold hydrosols and a derivatization cocktail of peptide-capping ligands, which carry the functionalities of choice.  相似文献   

12.
In this report, we demonstrate a label-free genosensor based on DNA hairpins coupled to gold coated sensor surfaces. The hairpin probes were labeled with a thiolated moiety for immobilization at the 5' end and with a fluorophore for signal transduction at the 3' end. In the absence of the complement, the fluorophore is quenched by energy transfer to the gold surface. Addition of the target sequence leads to the hairpin unfolding, and releases the fluorescent signal. This built-in property, using a gold film as both the immobilizing substrate and quenching agent, has the advantage of simplicity in design and ease of further integration. Our results showed that lengths of both the stem and the loop structures have significant effects on the sensor performance. Hybridization kinetics was investigated for various probe/target lengths and concentrations. An optimized hairpin probe gave a fluorescent signal increase of 39 folds after hybridization, which is much higher than the earlier reported results. A limit of detection (LOD) down to 0.3 nM for the complementary target DNA detection has been achieved. The developed sensor was further successfully applied for the detection of single-base mismatch targets, as well as for the direct detection of PCR products.  相似文献   

13.
The application of electrochemical techniques for DNA detection is motivated by their potential to detect hybridisation events in a more rapid, simplistic and cost-effective manner compared to conventional optical assays. Here, we present an electrochemical DNA sensor for the specific and quantitative detection of single-stranded DNA (ssDNA). Probe oligonucleotides were immobilised onto thin gold film electrodes by a 5'-thiol-linker. Hybridisation was detected by means of the electroactive redox-marker methylene blue (MB) covalently attached to the 5'-end of the target ssDNA and voltammetric techniques. MB-labeled target ssDNA was recognised down to 30 pmol. By application of a competitive binding assay, non-labeled ssDNA was detected down to 3 pmol. In addition, the DNA-modified electrodes were capable of sensing single base-pair mismatches at different positions within the sequence of the hybridised double-stranded DNA (dsDNA).  相似文献   

14.
A comparative study was performed to evaluate the signal amplification strategies in electrochemical affinity sensing, which included the direct electron transfer and diffusible-group mediated electron transfer between label enzymes that were specifically bound to target proteins and chemically modified electrode surfaces. As a platform surface for affinity recognition reactions, a double functionalized poly(amido amine) dendrimer monolayer that was modified with ferrocene and biotin groups was constructed on a gold surface. With the chemically modified electrode, a model affinity sensing with avidin was investigated. The advantages of adopting the diffusible-group mediated signaling strategy were demonstrated in terms of signal sensitivity and stability.  相似文献   

15.
The analytical performance of an enhanced surface area electrolyte insulator semiconductor (EIS) device was investigated for DNA sensor development. The work endeavored to advance EIS performance by monitoring the effect of DNA probe layers have on the impedimetric signal during target hybridisation detection. Two universally employed covalent chemistries, direct and spacer-mediated attachment of amino modified probe molecules to amino-functionalised surfaces were investigated. Relative areal densities of immobilised probe were measured on planar and enhanced surface area substrates using epi-fluorescence microscopy. The reproducibility of the each immobilisation method was seen to have a direct effect on the reproducibility of the impedimetric signal. The sensitivity and selectivity was seen to be dependent on the type of immobilisation method. Real time, impedimetric detection of target DNA hybridisation concentrations as low as 25 and 1 nM were possible. The impact that probe concentration had on the impedimetric signal for selective and non-selective interactions was also investigated.  相似文献   

16.
Electrochemical DNA-based sensors that exploit the inherent sensitivity of DNA-mediated charge transport (CT) to base pair stacking perturbations are capable of detecting base pair mismatches and some common base damage products. Here, using DNA-modified gold electrodes, monitoring the electrocatalytic reduction of DNA-bound methylene blue, we examine a wide range of base analogues and DNA damage products. Among those detected are base damage products O4-methyl-thymine, O6-methyl-guanine, 8-oxo-guanine, and 5-hydroxy-cytosine, as well as a therapeutic base, nebularine. The efficiency of DNA-mediated CT is found not to depend on the thermodynamic stability of the helix. However, general trends in how base modifications affect CT efficiency are apparent. Modifications to the hydrogen bonding interface in Watson-Crick base pairs yields a substantial loss in CT efficiency, as does added steric bulk. Base structure modifications that may induce base conformational changes also appear to attenuate CT in DNA as do those that bury hydrophilic groups within the DNA helix. Addition and subtraction of methyl groups that do not disrupt hydrogen bonding interactions do not have a large effect on CT efficiency. This sensitive detection methodology based upon DNA-mediated CT may have utility in diagnostic applications and implicates DNA-mediated CT as a possible damage detection mechanism for DNA repair enzymes.  相似文献   

17.
A new microarray system has been developed for gene expression analysis using cationic gold nanoparticles with diameters of 250 nm as a target detection reagent. The approach utilizes nonlabeled target molecules hybridizing with complementary probes on the array, followed by incubation in a colloidal gold solution. The hybridization signal results from the precipitation of nanogold particles on the hybridized spots due to the electrostatic attraction of the cationic gold particles and the anionic phosphate groups in the target DNA backbone. In contrast to conventional fluorescent detection, this nanoparticle-based detection system eliminates the target labeling procedure. The visualization of hybridization signals can be accomplished with a flatbed scanner instead of a confocal laser scanner, which greatly simplifies the process and reduces the cost. The sensitivity is estimated to be less than 2 pg of DNA molecules captured on the array surface. The signal from hybridized spots quantitatively represents the amount of captured target DNA and therefore permits quantitative gene expression analysis. Cross-array reproducibility is adequate for detecting twofold or less signal changes across two microarray experiments.  相似文献   

18.
Aptamer biosensor for protein detection using gold nanoparticles   总被引:3,自引:0,他引:3  
Combining gold nanoparticles (GNPs) as fluorescence quencher and aptamer as probe, we have developed protein biosensors by using DNA-modified GNPs. We examined how the experimental design, such as the type of interaction between DNA strands and GNPs, temperature, and microenvironment of aptamer, influences the recognition ability of the biosensor. Under our experimental conditions, the recognition of protein by the complex of dye-labeled DNA hybridized with aptamer that is immobilized on GNPs (Ap-Im-GNPs) shows the best character in protein detection.  相似文献   

19.
Electrochemistry at DNA-modified surfaces provides an alternative approach to photochemistry or radiation biology for studying charge migration through the double helix. Using short duplexes self-assembled onto gold, electrochemical reduction of redox-active reporter molecules has been observed through DNA films more than 50 A thick, with heterogeneous rate constants as great as approximately 100 s(-1). Though apparently insensitive to base content and sequence, even small distortions in the electronic structure of the pi-stack (caused, for example, by single-base mismatches and other DNA lesions) attenuate the rate of electron transport. Understanding the role of conformational dynamics within the double helix, as well as the cooperative effects of self-assembling individual duplexes into ordered superlattices remain important challenges for theory and experiment.  相似文献   

20.
The ability to monitor the progress of single-molecule enzyme reactions is often limited by the need to use fluorogenic substrates. A method based on the principle of the Millikan oil drop experiment was developed to monitor the change in charge of substrates bound to a nanoparticle and offers a means of detecting single-enzyme reactions without fluorescence detection. As a proof of principle of the ability to monitor reactions that result in a change in substrate charge, polymerization on a single DNA template was detected. A custom oligonucleotide was synthesized that allowed for the attachment of single DNA templates to gold nanoparticles with a single polymer tether. The nanoparticles were then tethered to the surface of a microfluidic channel where the positions of the nanoparticles, subjected to an oscillating electric field, were monitored using dark field microscopy. With short averaging times, the signal-to-noise level was low enough to discriminate changes in charge of less than 1.2%. Polymerization of a long DNA template demonstrated the ability to use the system to monitor single-molecule enzymatic activity. Finally, nanoparticle surfaces were modified with thiolated moieties to reduce and/or shield the number of unproductive charges and allow for improved sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号