首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
12 healthy men aged 21-25 years performed, in the sitting position, a sustained handgrip at 25% of their maximum voluntary contraction, first with each hand separately and then with both hands simultaneously. Heart rate (HR), systolic blood pressure (SBP), stroke volume (determined reographically) and plasma catecholamine concentration were measured during each handgrip test. The HR and SBP increased consistently during each handgrip test while stroke volume decreased by approximately 20% of the initial value. Cardiac output did not change significantly. There were no significant differences in the magnitude and dynamics of the cardiovascular responses between the tests with one and with both hands. Plasma noradrenaline and adrenaline levels showed similar elevations in response to handgrip performed with the right hand and with both hands, while during the exercise performed with the left hand the increase in the plasma catecholamine concentration was less pronounced. It was concluded that: (1) during sustained handgrip, performed in the sitting position by young healthy subjects, the stroke volume markedly decreases and cardiac output does not change significantly in spite of the increased HR; (2) the cardiovascular and sympatho-adrenal responses to static handgrip do not depend on the mass of contracting muscle when the same relative tension is developed.  相似文献   

2.
The mechanism of the pressor response to small muscle mass (e.g., forearm) exercise and during metaboreflex activation may include elevations in cardiac output (Q) or total peripheral resistance (TPR). Increases in Q must be supported by reductions in visceral venous volume to sustain venous return as heart rate (HR) increases. Therefore, this study tested the hypothesis that increases in Q, supported by reductions in splanchnic volume (portal vein constriction), explain the pressor response during handgrip exercise and metaboreflex activation. Seventeen healthy women performed 2 min of static ischemic handgrip exercise and 2 min of postexercise circulatory occlusion (PECO) while HR, stroke volume and superficial femoral artery flow (Doppler), blood pressure (Finometer), portal vein diameter (ultrasound imaging), and muscle sympathetic nerve activity (MSNA; microneurography) were measured followed by the calculation of Q, TPR, and leg vascular resistance (LVR). Compared with baseline, mean arterial blood pressure (MAP) (P < 0.001) and Q (P < 0.001) both increased in each minute of exercise accompanied by a approximately 5% reduction in portal vein diameter (P < 0.05). MAP remained elevated during PECO, whereas Q decreased below exercise levels. MSNA was elevated above baseline during the second minute of exercise and through the PECO period (P < 0.05). Neither TPR nor LVR was changed from baseline during exercise and PECO. The data indicate that the majority of the blood pressure response to isometric handgrip exercise in women was due to mobilization of central blood volume and elevated stroke volume and Q rather than elevations in TVR or LVR resistance.  相似文献   

3.
We sought to determine whether the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism is associated with submaximal exercise cardiovascular hemodynamics. Postmenopausal healthy women (20 sedentary, 20 physically active, 22 endurance athletes) had cardiac output (acetylene rebreathing) measured during 40, 60, and 80% VO(2 max) exercise. The interaction of ACE genotype and habitual physical activity (PA) level was significantly associated with submaximal exercise systolic blood pressure, with only sedentary women exhibiting differences among genotypes. No significant effects of ACE genotype or its interaction with PA levels was observed for submaximal exercise diastolic blood pressure. ACE genotype was significantly associated with submaximal exercise heart rate (HR) with ACE II having approximately 10 beats/min higher HR than ACE ID/DD genotype women. ACE genotype did not interact significantly with habitual PA level to associate with submaximal exercise HR. ACE genotype was not independently, but was interactively with habitual PA levels, associated with differences in submaximal exercise cardiac output and stroke volume. For cardiac output, ACE II genotype women athletes had ~25% greater cardiac output than ACE DD genotype women athletes, whereas for stroke volume genotype-dependent differences were observed in both the physically active and athletic women. ACE genotype was not significantly associated, either independently or interactively with habitual PA levels, with submaximal exercise total peripheral resistance or arteriovenous O(2) difference. Thus the common ACE locus polymorphic variation is associated with many submaximal exercise cardiovascular hemodynamic responses.  相似文献   

4.
The influence of aerobic capacity on the cardiovascular response to handgrip exercise, in relation to the muscle mass involved in the effort, was tested in 8 trained men (T) and 17 untrained men (U). The subjects performed handgrip exercises with the right-hand (RH), left-hand (LH) and both hands simultaneously (RLH) at an intensity of 25% of maximal voluntary contraction force. Maximal aerobic capacity was 4.3 l.min-1 in T and 3.21 l.min-1 in U (P less than 0.01). The endurance time for handgrip was longer in T than in U by 29% (P less than 0.05) for RH, 38% (P less than 0.001) for LH and 24% (P less than 0.001) for RLH. Heart rate (fc) was significantly lower in T than in U before handgrip exercise, and showed smaller increases (P less than 0.01) at the point of exhaustion: 89 vs 106 beats.min-1 for RH, 93 vs 100 beats.min-1 for LH and 92 vs 108 beats.min-1 for RLH. Stroke volume (SV) at rest was greater in T than in U and decreased significantly (P less than 0.05) during handgrip exercise in both groups of subjects. At the point of exhaustion SV was still greater in T than in U: 75 vs 57 ml for RH, 76 vs 54 ml for LH and 76 vs 56 ml for RLH. During the last seconds of handgrip exercise, the left ventricular ejection time was longer in T than in U. Increases in cardiac output (Qc) and systolic blood pressure did not differ substantially between T and U, nor between the handgrip exercise tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Increased blood pressure (BP) and heart rate during exercise characterizes the exercise pressor reflex. When evoked by static handgrip, mechanoreceptors and metaboreceptors produce regional changes in blood volume and blood flow, which are incompletely characterized in humans. We studied 16 healthy subjects aged 20-27 yr using segmental impedance plethysmography validated against dye dilution and venous occlusion plethysmography to noninvasively measure changes in regional blood volumes and blood flows. Static handgrip while in supine position was performed for 2 min without postexercise ischemia. Measurements of heart rate and BP variability and coherence analyses were used to examine baroreflex-mediated autonomic effects. During handgrip exercise, systolic BP increased from 120 +/- 10 to 148 +/- 14 mmHg, whereas heart rate increased from 60 +/- 8 to 82 +/- 12 beats/min. Heart rate variability decreased, whereas BP variability increased, and transfer function amplitude was reduced from 18 +/- 2 to 8 +/- 2 ms/mmHg at low frequencies of approximately 0.1 Hz. This was associated with marked reduction of coherence between BP and heart rate (from 0.76 +/- 0.10 to 0.26 +/- 0.05) indicative of uncoupling of heart rate regulation by the baroreflex. Cardiac output increased by approximately 18% with a 4.5% increase in central blood volume and an 8.5% increase in total peripheral resistance, suggesting increased cardiac preload and contractility. Splanchnic blood volume decreased reciprocally with smaller decreases in pelvic and leg volumes, increased splanchnic, pelvic and calf peripheral resistance, and evidence for splanchnic venoconstriction. We conclude that the exercise pressor reflex is associated with reduced baroreflex cardiovagal regulation and driven by increased cardiac output related to enhanced preload, cardiac contractility, and splanchnic blood mobilization.  相似文献   

6.
Orthostatic intolerance follows actual weightlessness and weightlessness simulated by bed rest. Orthostasis immediately after acute exercise imposes greater cardiovascular stress than orthostasis without prior exercise. We hypothesized that 5 min/day of simulated orthostasis [supine lower body negative pressure (LBNP)] immediately following LBNP exercise maintains orthostatic tolerance during bed rest. Identical twins (14 women, 16 men) underwent 30 days of 6 degrees head-down tilt bed rest. One of each pair was randomly selected as a control, and their sibling performed 40 min/day of treadmill exercise while supine in 53 mmHg (SD 4) [7.05 kPa (SD 0.50)] LBNP. LBNP continued for 5 min after exercise stopped. Head-up tilt at 60 degrees plus graded LBNP assessed orthostatic tolerance before and after bed rest. Hemodynamic measurements accompanied these tests. Bed rest decreased orthostatic tolerance time to a greater extent in control [34% (SD 10)] than in countermeasure subjects [13% (SD 20); P < 0.004]. Controls exhibited cardiac stroke volume reduction and relative cardioacceleration typically seen after bed rest, yet no such changes occurred in the countermeasure group. These findings demonstrate that 40 min/day of supine LBNP treadmill exercise followed immediately by 5 min of resting LBNP attenuates, but does not fully prevent, the orthostatic intolerance associated with 30 days of bed rest. We speculate that longer postexercise LBNP may improve results. Together with our earlier related studies, these ground-based results support spaceflight evaluation of postexercise orthostatic stress as a time-efficient countermeasure against postflight orthostatic intolerance.  相似文献   

7.
Ventilatory and cardiovascular responses to isometric exercise, with special reference to hand-grip exercise, were reviewed. Blood flow through the forearm (FBF) during muscular contraction is dependent on relative strength to MVC (maximum voluntary contraction), duration of exercise, and hand temperature. FBF could attain steady state during exercise with intensities less than 15% MVC. Heart rate (HR) starts to increase with a latency as short as 0.4 to 0.6 sec in conscious animals and men in response to voluntary as well as electrically induced isometric exercise. This response is vagally transmitted. The sympathetic nerves mediated HR response with a longer delay is also found. Cardiac contractility is augmented via sympathetic beta-receptors during isometric exercise. With aging, HR response tends to be intensified, whereas, stroke volume response tends to be depressed. Thus increased cardiac output is resulted in elevated arterial blood pressure. Total vascular resistance is reported to be unaltered, or to increase, despite of consistent increase in muscle sympathetic activities during the isometric exercise. Ventilation is augmented during exercise, but the pattern of its response is not in full agreement among investigators. The underlying mechanisms to elicit those responses are discussed.  相似文献   

8.
Wehypothesized that muscle sympathetic nerve activity (MSNA) andcardiovascular responses to the conventional head-up tilt (HUT) aredifferent from those to head-up suspension (HUS) because of antigravitymuscle activity. The MSNA from the tibial nerve, heart rate, bloodpressure, stroke volume, cardiac output, and calf blood flow weremeasured in 13 healthy young subjects. Left atrial diameter wasmeasured by two-dimensional echocardiography in another nine subjects.The resting MSNA and cardiovascular responses at a low level (20°)of orthostasis were similar during both modes. At higher levels (40 and60°), the responses of MSNA, heart rate, stroke volume, and cardiacoutput were significantly stronger and there was a smaller reduction incalf blood flow during HUT than during HUS(P < 0.05). Left atrial diameter was decreased significantly from the resting values during HUT and HUSwithout any significant difference between the modes of orthostasis. The results provide evidence that the engagement of antigravity musclesduring HUT may have additive effects on sympathetic vasoconstrictor andcardiovascular responses to orthostatic stress.

  相似文献   

9.
The effects of aging on the cardiovascular response to continuous light isometric and aerobic exercise remains to be determined. Thus, the purpose of this study was to compare the cardiovascular response of young and older males during light handgrip and cycle ergometry exercise. Blood pressure, heart rate, rate pressure product, as well as pre-ejection period (derived from impedance cardiography) were obtained for 15 young [mean (SE) age: 21 (0.7) years] and 15 older males [59 (0.8) years] during and after light handgrip exercise and cycle ergometry. The parasympathetic influence on the heart was also assessed through a time-series analysis of heart period variability (HPVts). Both during and when recovering from the handgrip exercise and cycle ergometry, the older subjects exhibited a significantly higher absolute systolic and diastolic blood pressure, and rate pressure product, and a lower HRVts than the young subjects. Relative to baseline, the change in pre-ejection period was lower for the young subjects during the handgrip and cycle ergometry, tasks. These results indicate that although the sympathetic influence on both the myocardium and the vasculature was less pronounced in the older males, the aging cardiovasculature was under greater hemodynamic stress both during rest and during exposure to light isometric and aerobic challenge.  相似文献   

10.
Heart transplantation does not normalize exercise capacity or the ventilatory response to exercise. We hypothesized that excessive muscle reflex activity, as assessed by the muscle sympathetic nerve activity (MSNA) response to handgrip exercise, persists after cardiac transplantation and that this mechanism is related to exercise hyperpnea in heart transplant recipients (HTRs). We determined the MSNA, ventilatory, and cardiovascular responses to isometric and dynamic handgrips in 11 HTRs and 10 matched control subjects. Handgrips were followed by a post-handgrip ischemia to isolate the metaboreflex contribution to exercise responses. HTRs and control subjects also underwent recordings during isocapnic hypoxia and a maximal, symptom-limited, cycle ergometer exercise test. HTRs had higher resting MSNA (P < 0.01) and heart rate (P < 0.01) than the control subjects. Isometric handgrip increased MSNA in HTRs more than in the controls (P = 0.003). Dynamic handgrip increased MSNA only in HTRs. During post-handgrip ischemia, MSNA and ventilation remained more elevated in HTRs (P < 0.05). The MSNA and ventilatory responses to hypoxia were also higher in HTRs (both P < 0.04). In HTRs, metaboreflex overactivity was related to the ventilatory response to exercise, characterized by the regression slope relating ventilation to CO(2) output (r = +0.8; P < 0.05) and a lower peak ventilation (r = +0.81; P < 0.05) during cycle ergometer exercise tests. However, increased chemoreflex sensitivity (r = +0.91; P < 0.005), but not metaboreflex activity, accounted for the lower peak ventilation during exercise in a stepwise regression analysis. In conclusion, heart transplantation does not normalize muscle metaboreceptor activity; both increased metaboreflex and chemoreflex control are related to exercise intolerance in HTRs.  相似文献   

11.
Postural tachycardia syndrome (POTS) is characterized by exercise intolerance and sympathoactivation. To examine whether abnormal cardiac output and central blood volume changes occur during exercise in POTS, we studied 29 patients with POTS (17-29 yr) and 12 healthy subjects (18-27 yr) using impedance and venous occlusion plethysmography to assess regional blood volumes and flows during supine static handgrip to evoke the exercise pressor reflex. POTS was subgrouped into normal and low-flow groups based on calf blood flow. We examined autonomic effects with variability techniques. During handgrip, systolic blood pressure increased from 112 +/- 4 to 139 +/- 9 mmHg in control, from 119 +/- 6 to 143 +/- 9 in normal-flow POTS, but only from 117 +/- 4 to 128 +/- 6 in low-flow POTS. Heart rate increased from 63 +/- 6 to 82 +/- 4 beats/min in control, 76 +/- 3 to 92 +/- 6 beats/min in normal-flow POTS, and 88 +/- 4 to 100 +/- 6 beats/min in low-flow POTS. Heart rate variability and coherence markedly decreased in low-flow POTS, indicating uncoupling of baroreflex heart rate regulation. The increase in central blood volume with handgrip was absent in low-flow POTS and blunted in normal-flow POTS associated with abnormal splanchnic emptying. Cardiac output increased in control, was unchanged in low-flow POTS, and was attenuated in normal-flow POTS. Total peripheral resistance was increased compared with control in all POTS. The exercise pressor reflex was attenuated in low-flow POTS. While increased cardiac output and central blood volume characterizes controls, increased peripheral resistance with blunted or eliminated in central blood volume increments characterizes POTS and may contribute to exercise intolerance.  相似文献   

12.
The cardiac function was studied by radionuclide cardiography in eight healthy subjects at rest and during submaximal upright exercise before and after autonomic blockade with metoprolol and atropine. At rest the median stroke volume was reduced by 21% during autonomic blockade (P less than 0.01), but cardiac output was maintained by a concomitant increase in heart rate. The systolic blood pressure was reduced from 120 to 105 mmHg (P less than 0.01), and left ventricular ejection fraction was reduced from 61 to 56% (P less than 0.05). After autonomic blockade the heart rate reached during exercise was the same. Stroke volume and cardiac output were maintained through cardiac dilation. The increase in left ventricular end-diastolic volume was 31 vs. 10% during control conditions (P less than 0.01). The systolic blood pressure was reduced from 174 to 135 mmHg (P less than 0.01). Left ventricular ejection fraction was reduced from 75 to 67% (P less than 0.05), but the increase from rest to exercise was preserved. Total peripheral resistance was reduced by 17% (P less than 0.05). These findings suggest that the heart possesses intrinsic mechanisms to maintain cardiac output during submaximal upright exercise. End-diastolic dilation results in a preserved stroke volume despite a reduced contractility.  相似文献   

13.
Following 3 weeks exposure to an altitude of 3,100 m, the cardiac output response to upright submaximal exercise was examined in 3 healthy subjects breathing ambient air and breathing 60% oxygen. The procedure allowed acute alteration of the 2 conditions within a single testing period of 30 min, 60% oxygen breathing either preceding or following breathing ambient air. Cardiac output was also measured in two of the subjects during maximal exercise under these two conditions. Administration of the high oxygen inspirate during exercise had little effect on the level of cardiac output but resulted in an immediate bradycardia and a dramatic increase of approximately 16% in stroke volume. Stroke volumes during maximal exercise were also increased by approximately 10% by the administration of high oxygen. It is suggested that the condition of decreases exercise stroke volume which develops with chronic exposure to altitude may be largely the result of diminished myocardial contractility stemming from a condition of myocardial hypoxia.  相似文献   

14.
One of the most debilitating effects of primary aging is the decline in aerobic exercise capacity. One of its causes is an age-related decline in peak exercise stroke volume. This study's main purpose was to determine the cardiovascular adaptations to aging that most influence peak exercise stroke volume in the elderly. We hypothesized that increased left ventricular (LV) filling and mild concentric LV remodeling would be associated with an increase in peak exercise stroke volume corrected for lean body mass (LBM) and that an increased augmentation index (AI), which is a marker of arterial stiffness, would be associated with a decrease. A second aim was to determine the adaptations to aging that most influence LV concentric remodeling in the elderly. We hypothesized that AI would be a predictor of LV mass/LBM and the LV posterior wall thickness-to-LV radius ratio (h/r). We performed a cross-sectional study of cardiac and vascular adaptations to aging in 52 sedentary, elderly subjects. LV filling [as measured by the early-to-late transmitral flow velocity ratio (E/A)] was inversely correlated with and was an independent predictor of peak exercise stroke volume/LBM and was also a predictor of LV remodeling. AI was a predictor of LV remodeling (LV mass/LBM) but not of peak exercise stroke volume/LBM. We conclude that 1) maintenance of LV filling (E/A <1) is associated with a higher peak exercise stroke volume/LBM in very elderly subjects and thus may be a useful adaptation that enhances stroke volume during peak exercise, 2) LV remodeling and AI are less influential on peak exercise stroke volume/LBM, and 3) AI was the most important predictor of LV remodeling.  相似文献   

15.
The hemodynamic effects of increases in airway pressure (Paw) are related in part to Paw-induced increases in right atrial pressure (Pra), the downstream pressure for venous return, thus decreasing the pressure gradient for venous return. However, numerous animal and clinical studies have shown that venous return is often sustained during ventilation with positive end-expiratory pressure (PEEP). Potentially, PEEP-induced diaphragmatic descent increases abdominal pressure (Pabd). We hypothesized that an increase in Paw induced by PEEP would minimally alter venous return because the associated increase in Pra would be partially offset by a concomitant increase in Pabd. Thus we studied the acute effects of graded increases of Paw on Pra, Pabd, and cardiac output by application of inspiratory-hold maneuvers in sedated and paralyzed humans. Forty-two patients were studied in the intensive care unit after coronary artery bypass surgery during hemodynamically stable, fluid-resuscitated conditions. Paw was progressively increased in steps of 2 to 4 cmH(2)O from 0 to 20 cmH(2)O in sequential 25-s inspiratory-hold maneuvers. Right ventricular (RV) cardiac output (CO(td)) and RV ejection fraction (EF(rv)) were measured at 5 s into the inspiratory-hold maneuver by the thermodilution technique. RV end-diastolic volume and stroke volume were calculated from EF(rv) and heart rate data, and Pra was measured from the pulmonary artery catheter. Pabd was estimated as bladder pressure. We found that, although increasing Paw progressively increased Pra, neither CO(td) nor RV end-diastolic volume changed. The ratio of change (Delta) in Paw to Delta Pra was 0.32 +/- 0.20. The ratio of Delta Pra to Delta CO(td) was 0.05 +/- 00.15 l x min(-1) x mmHg(-1). However, Pabd increased such that the ratio of Delta Pra to Delta Pabd was 0.73 +/- 0.36, meaning that most of the increase in Pra was reflected in increases in Pabd. We conclude that, in hemodynamically stable fluid-resuscitated postoperative surgical patients, inspiratory-hold maneuvers with increases in Paw of up to 20 cmH(2)O have minimal effects on cardiac output, primarily because of an in-phase-associated pressurization of the abdominal compartment associated with compression of the liver and squeezing of the lungs.  相似文献   

16.
Factors contributing to maximal incremental and short-term exercise capacity were measured before and after 12 wk of high-intensity endurance training in 12 old (60-70 yr) and 10 young (20-30 yr) sedentary healthy males. Peak O2 uptake in incremental cycle ergometer exercise increased from 1.60 +/- 0.073 to 2.21 +/- 0.073 (SE) l/min (38% increase) in the old subjects and from 2.54 +/- 0.141 to 3.26 +/- 0.181 l/min (29%) in the young subjects. Peak cardiac output, estimated by extrapolation from a series of submaximal measurements by the CO2 rebreathing method, increased by 30% (from 12.7 to 16.5 l/min) in the old subjects, associated with a 6% increase (from 126 to 135 ml/l) in arteriovenous O2 difference; in the young subjects there were equal 14% increases in both variables (18.0 to 20.5 l/min and 140 to 159 ml/l, respectively). Submaximal mean arterial pressure and cardiac output were lower posttraining in the old subjects; total vascular conductance and cardiac stroke volume increased. Although peak power at the start of a short-term maximal isokinetic test did not change, total work accomplished in 30 s at a pedaling frequency of 110 revolutions/min increased in both groups, from 11.2 to 12.6 kJ and from 15.7 to 16.9 kJ in the old and young, respectively; fatigue during the 30-s test was less, and postexercise plasma lactate concentrations were lower. In older subjects, increases in aerobic power after high-intensity endurance training are at least as large as in younger subjects and are associated with increases in vascular conductance, maximal cardiac output, and stroke volume.  相似文献   

17.
Cardiovascular response to exercise in younger and older men   总被引:2,自引:0,他引:2  
Measurements of cardiac performance for humans at various ages is influenced by the variable examined, the population and techniques employed, and the factors that co-vary with age, including the presence of disease and physical conditioning. Interstudy differences in the extent to which occult coronary disease is present in older subjects and in the level of physical conditioning among subjects may underlie the variable perspectives contained in the literature of how aging affects cardiovascular function. In carefully screened, highly motivated but not athletically trained community-dwelling subjects, resting cardiovascular parameters are not age related except for systolic blood pressure, which increases with age. During vigorous exercise the mechanisms used to achieve a high level of cardiac output shift from a dependence on a catecholamine-mediated increase in heart rate and inotropy to a dependence on the Frank Starling mechanism. One reason for the age difference in cardiovascular response to exercise may be a diminished responsiveness to beta-adrenergic stimulation in these subjects. In other elderly subjects who cannot exercise to high work loads, a decline in stroke volume as well as heart rate at peak exercise has been observed. Whether the inability of these individuals to augment stroke volume is caused by a decrease in the ability of the heart to increase diastolic filling, by a decrease in systolic pump function caused by an increased afterload, by intrinsic myocardial contractile defects, or by a greater diminution of the cardiovascular response to beta-adrenergic stimuli is presently unknown.  相似文献   

18.
Peak oxygen uptake (VO(2 peak)) in patients with heart failure (HF) is inversely related to muscle sympathetic nerve activity (MSNA) at rest. We hypothesized that the MSNA response to handgrip exercise is augmented in HF patients and is greatest in those with low VO(2 peak). We studied 14 HF patients and 10 age-matched normal subjects during isometric [30% of maximal voluntary contraction (MVC)] and isotonic (10%, 30%, and 50% MVC) handgrip exercise that was followed by 2 min of posthandgrip ischemia (PHGI). MSNA was significantly increased during exercise in HF but not normal subjects. Both MSNA and HF levels remained significantly elevated during PHGI after 30% isometric and 50% isotonic handgrip in HF but not normal subjects. HF patients with lower VO(2 peak) (<56% predicted; n = 8) had significantly higher MSNA during rest and exercise than patients with VO(2 peak) > 56% predicted (n = 6) and normal subjects. The muscle metaboreflex contributes to the greater reflex increase in MSNA during ischemic or intense nonischemic exercise in HF. This occurs at a lower threshold than normal and is a function of VO(2 peak).  相似文献   

19.
During mechanical ventilation, increased pulmonary vascular resistance (PVR) may decrease right ventricular (RV) performance. We hypothesized that volume loading, by reducing PVR, and, therefore, RV afterload, can limit this effect. Deep anesthesia was induced in 16 mongrel dogs (8 oleic acid-induced acute lung injury and 8 controls). We measured ventricular pressures, dimensions, and stroke volumes during positive end-expiratory pressures of 0, 6, 12, and 18 cmH(2)O at three left ventricular (LV) end-diastolic pressures (5, 12, and 18 mmHg). Oleic acid infusion (0.07 ml/kg) increased PVR and reduced respiratory system compliance (P < 0.05). With positive end-expiratory pressure, PVR was greater at a lower LV end-diastolic pressure. Increased PVR was associated with a decreased transseptal pressure gradient, suggesting that leftward septal shift contributed to decreased LV preload, in addition to that caused by external constraint. Volume loading reduced PVR; this was associated with improved RV output and an increased transseptal pressure gradient, which suggests that rightward septal shift contributed to the increased LV preload. If PVR is used to reflect RV afterload, volume loading appeared to reduce PVR, thereby improving RV and LV performance. The improvement in cardiac output was also associated with reduced external constraint to LV filling; since calculated PVR is inversely related to cardiac output, increased LV output would reduce PVR. In conclusion, our results, which suggest that PVR is an independent determinant of cardiac performance, but is also dependent on cardiac output, improve our understanding of the hemodynamic effects of volume loading in acute lung injury.  相似文献   

20.
Postprandial hemodynamic changes were studied in healthy subjects at rest and during exercise in the upright position with and without autonomic blockade of the heart. At rest cardiac output increased 61% mostly because of a stroke volume increase accomplished by left ventricular end-diastolic dilation. These changes seemed to be dependent on the autonomic nervous system, whereas the postprandial heart rate increase did not. During exercise cardiac output was 23% higher after food intake due to a rise in both stroke volume and heart rate. These changes were apparently under influence of the autonomic nervous system, whereas left ventricular dilation was not. The present findings indicate that most of the postprandial changes in the central circulation are under control of the autonomic nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号