首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlled osmotic lysis (water-washing) of rat liver mitochondria results in a mixed population of small vesicles derived mainly from the outer mitochondrial membrane and of larger bodies containing a few cristae derived from the inner membrane. These elements have been separated on Ficoll and sucrose gradients. The small vesicles were rich in monoamine oxidase, and the large bodies were rich in cytochrome oxidase. Separation of the inner and outer membranes has also been accomplished by treating mitochondria with digitonin in an isotonic medium and fractionating the treated mitochondria by differential centrifugation. Treatment with low digitonin concentrations released monoamine oxidase activity from low speed mitochondrial pellets, and this release of enzymatic activity was correlated with the loss of the outer membrane as seen in the electron microscope. The low speed mitochondrial pellet contained most of the cytochrome oxidase and malate dehydrogenase activities of the intact mitochondria, while the monoamine oxidase activity could be recovered in the form of small vesicles by high speed centrifugation of the low speed supernatant. The results indicate that monoamine oxidase is found only in the outer mitochondrial membrane and that cytochrome oxidase is found only in the inner membrane. Digitonin treatment released more monoamine oxidase than cytochrome oxidase from sonic particles, thus indicating that digitonin preferentially degrades the outer mitochondrial membrane.  相似文献   

2.
Treatment of yeast mitochondria with digitonin was used in order to prepare an inner membrane-matrix fraction preserving its permeability properties. The incubation time of mitochondria with digitonin was an essential parameter for the selective solubilization of the outer membrane. The incubation of mitochondria for l min at different concentrations of digitonin led to a three-step release of mitochondrial enzymes: (a) at low concentrations of digitonin, adenylate kinase was released; (b) higher concentrations were required to solubilize kynurenine hydroxylase, an outer membrane marker; (c) inner membrane markers (succinate dehydrogenase and oligomycin-sensitive adenosine triphosphatase) and matrix markers (fumarase and isocitrate dehydrogenase) were significantly released at concentrations of digitonin higher than 0.4 mg/mg of protein. The electron microscopic aspects of yeast mitoplasts (inner membrane-matrix fraction obtained by treatment with 0.4 mg of digitonin) showed an orthodox and a twisted configuration. These new organelles retained respiratory control when assayed with ethanol as the substrate. Their selective permeability properties were preserved as shown by isoosmotic swelling in potassium or ammonium salt solutions.  相似文献   

3.
Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5'-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.  相似文献   

4.
Enzyme distribution in potato mitochondria was investigatedby selectively disrupting the outer and inner membranes withdigitonin. Antimycin-insensitive NADH-cytochrome c reductase,an outer membrane marker, was released at low digitonin concentrations(0.1 mg mg–1 mitochondrial protein). Soluble matrix enzymes,fumarase and malate dehydrogenase were released at 0.3–0.4mg digitonin mg–1 protein, as the inner membrane ruptured.Very little (about 10%) cytochrome oxidase activity was released,even at higher digitonin concentrations, in accord with thisenzyme being an integral inner membrane protein. By this criterionadenylate kinase is also firmly bound to the inner membrane.Evidence indicates that it faces the intermembrane space. Malic enzyme activity was released by the same digitonin concentrationthat released fumarase and malate dehydrogenase, indicatingthat malic enzyme is a soluble matrix enzyme. No activity wasreleased at low digitonin concentrations which selectively breakthe outer membrane, showing that malic enzyme is not presentin the intermembrane space. Considerable catalase activity (20—40 µmol O2 min–1mg–1 protein) was associated with washed mitochondrialpreparations, but 95% of this was lost upon purification ofmitochondria. The remaining activity was firmly bound to themitochondrial membranes.  相似文献   

5.
6.
Rotational diffusion of cytochrome oxidase in the inner membrane of rat liver mitochondria was measured by detecting the decay of absorption anisotropy after photolysis of the heme a3.CO complex by a vertically polarized laser flash. As in previous experiments with beef heart mitochondria (Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J. (1980) J. Biol. Chem. 255, 5508-5510), co-existence of rotating cytochrome oxidase (mean rotational relaxation time, phi, of 700 to 1400 microseconds) and immobilized cytochrome oxidase (phi greater than 20 ms) was observed in mitochondria and mitoplasts. The effect of lipid/protein ratio by weight (L/P) on the relative proportions of mobile and immobile cytochrome oxidase was investigated following the fusion of soybean phospholipid vesicles with mitoplasts. The fusion procedure yielded four separate fractions upon sucrose density gradient centrifugation with L/P as follows: 0.3 in Pellet, 0.7 in Band 3, 1.5 in Band 2, and 3.0 in Band 1. The percentage of rotationally mobile cytochrome oxidase (phi = 700 to 1000 microseconds) in each of the different bands was found to be 16% in Pellet, 25% in Band 3, 47% in Band 2, and 76% in Band 1 at 37 degrees C. The dependence of the amount of mobile cytochrome oxidase on L/P indicates that the fraction of aggregated protein progressively decreases with decreasing concentration of proteins in the membrane. Thus, the large immobile fraction of cytochrome oxidase in mitochondrial inner membranes can be explained by nonspecific protein aggregation which is a consequence of the low L/P. The decrease in the mobile fraction in Pellet compared with mitoplasts was shown to be due to the pH 6.5 incubation used for fusion.  相似文献   

7.
Treatment of rat liver mitochondria with digitonin followed by differential centrifugation was used to resolve the intramitochondrial localization of both soluble and particulate enzymes. Rat liver mitochondria were separated into three fractions: inner membrane plus matrix, outer membrane, and a soluble fraction containing enzymes localized between the membranes plus some solublized outer membrane. Monoamine oxidase, kynurenine hydroxylase, and rotenone-insensitive NADH-cytochrome c reductase were found primarily in the outer membrane fraction. Succinate-cytochrome c reductase, succinate dehydrogenase, cytochrome oxidase, β-hydroxybutyrate dehydrogenase, α-ketoglutarate dehydrogenase, lipoamide dehydrogenase, NAD- and NADH-isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and ornithine transcarbamoylase were found in the inner membrane-matrix fraction. Nucleoside diphosphokinase was found in both the outer membrane and soluble fractions; this suggests a dual localization. Adenylate kinase was found entirely in the soluble fraction and was released at a lower digitonin concentration than was the outer membrane; this suggests that this enzyme is localized between the two membranes. The inner membrane-matrix fraction was separated into inner membrane and matrix by treatment with the nonionic detergent Lubrol, and this separation was used as a basis for calculating the relative protein content of the mitochondrial components. The inner membrane-matrix fraction retained a high degree of morphological and biochemical integrity and exhibited a high respiratory rate and respiratory control when assayed in a sucrose-mannitol medium containing EDTA.  相似文献   

8.
Recent evidence has shown that the outer, overt, malonyl-CoA-inhibitable carnitine palmitoyltransferase (CPTo) activity resides in the mitochondrial outer membrane [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382]. A comparison of CPTo activity of rat liver mitochondria with the inner, initially latent, carnitine palmitoyltransferase (CPTi) of the mitochondrial inner membrane has revealed that the presence of digitonin and several other detergents inactivates CPTo activity. The CPTi activity, in contrast, was markedly stimulated by various detergents and phospholipid liposomes. These findings explain why in previous studies, which used digitonin or other detergents to expose, separate and purify the CPT activities, the inferences were drawn that (a) the ratio of latent to overt CPT was quite high, (b) both the CPT activities could be ascribed to one active protein recovered, and (c) the observed lack of malonyl-CoA inhibition indicated possible loss/separation of a putative malonyl-CoA-inhibition-conferring protein. Although both CPTo and CPTi were found to catalyse the forward and the backward reactions, CPTo showed greater capacity for the forward reaction and CPTi for the backward reaction. The easily solubilizable CPT, released on sonication of mitoplasts or of intact mitochondria under hypo-osmotic conditions, resembled CPTi in its properties. When octyl glucoside was used under appropriate conditions, 40-50% of the CPTo of outer membranes became solubilized, but it showed limited stability and decreased malonyl-CoA sensitivity. Malonyl-CoA-inhibitability of CPTo was decreased also on exposure of outer membranes to phospholipase C. When outer membranes that had been exposed to octyl glucoside or to phospholipase C were subjected to a reconstitution procedure using asolectin liposomes, the malonyl-CoA-inhibitability of CPTo was restored. A role of phospholipids in the malonyl-CoA sensitivity of CPTo is thus indicated.  相似文献   

9.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

10.
Mobility in the mitochondrial electron transport chain   总被引:1,自引:0,他引:1  
The role of lateral diffusion in mitochondrial electron transport has been investigated by measuring the diffusion coefficients for lipid, cytochrome c, and cytochrome oxidase in membranes of giant mitoplasts from cuprizone-fed mice using the technique of fluorescence redistribution after photobleaching (FRAP). The diffusion coefficient of the phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine is dependent on the technique used to remove the outer mitochondrial membrane. A sonication technique yields mitoplasts with monophasic recovery of the lipid probe (D = 6 X 10(-9) cm2/s), while digitonin-treated mitochondria show biphasic recoveries (D1 = 5 X 10(-9) cm2/s; D2 = 1 X 10(-9) cm2/s). Digitonin appears to incorporate into mitoplasts, giving rise to decreased lipid mobility concomitant with increased rates of electron transfer from succinate to oxygen, in a manner reminiscent of the effects of cholesterol incorporation [Schneider, H., Lemasters, J. J., Hochli, M., & Hackenbrock, C. R. (1980) J. Biol. Chem. 255, 3748-3756]. FRAP measurements on tetramethylrhodamine cytochrome c modified at lysine-39 and on a mixture of active morpholinorhodamine derivatives of cytochrome c gave diffusion coefficients of (3.5-7) X 10(-10) cm2/s depending on the assay medium. With morpholinorhodamine-labeled antibodies purified on a cytochrome oxidase affinity column, the diffusion coefficient for cytochrome oxidase was determined to be 1.5 X 10(-10) cm2/s. The results are discussed in terms of a dynamic aggregate model in which an equilibrium exists between freely diffusing and associated electron-transfer components.  相似文献   

11.
Summary The removal of the outer mitochondrial membrane and hence of constituents of the intermembrane space in rat-liver mitochondria using digitonin showed that phosphate-dependent glutaminase, alanine and aspartate aminotransferase were localized in the mitoplasts. Further fractionation of mitoplasts following their sonication resulted in 90% of glutaminase, 98% of alanine aminotransferase and 48% of aspartate aminotransferase being recovered in the soluble fraction while the remainder of each enzyme was recovered in the sonicated vesicles fraction. These results indicated that glutaminase and alanine aminotransferase were soluble matrix enzymes, the little of each enzyme recovered in the sonicated vesicles fraction being probably due to entrapment in the vesicles. Aspartate aminotransferase had dual localization, in the inner membrane and matrix with the high specific activity in sonicated vesicles confirming its association with the membrane. Activation experiments suggested that the membrane-bound enzyme was localized on the inner side of the inner mitochondrial membrane.  相似文献   

12.
We have isolated outer and inner membranes of Serpulina hyodysenteriae by using discontinuous sucrose density gradients. The outer and inner membrane fractions contained less than 1 and 2%, respectively, of the total NADH oxidase activity (soluble marker) in the cell lysate. Various membrane markers including lipooligosaccharide (LOS), the 16-kDa outer membrane lipoprotein (SmpA), and the C subunit of the F1F0 ATPase indicated that the lowest-density membrane fraction contained outer membranes while the high-density membrane fraction contained inner membranes and that both are essentially free of contamination by the periplasmic flagella, a major contaminant of membranes isolated by other techniques. The outer membrane fractions (rho = 1.10 g/cm3) contained 0.25 mg of protein/mg (dry weight), while the inner membrane samples (rho = 1.16 g/cm3) contained significantly more protein (0.55 mg of protein/mg [dry weight]). Lipid analysis revealed that the purified outer membranes contained cholesterol as a major component of the membrane lipids. Treatment of intact S. hyodysenteriae with different concentrations of digitonin, a steroid glycoside that interacts with cholesterol, indicated that the outer membrane could be selectively removed at concentrations as low as 0.125%.  相似文献   

13.
When rat liver mitochondria were suspended in 0.15 m KCl, the cytochrome c appeared to be solubilized from the binding site on the outside of the inner membrane and trapped in the intermembrane space. When the outer membrane of these mitochondria was disrupted with digitonin at a digitonin concentration of 0.15 mg/mg of protein, the solubilized cytochrome c could be released from mitochondria along with adenylate kinase. When mitochondria were suspended in 0.15 m KCl instead of 0.33 m sucrose, the ADPO ratio observed with succinate, β-hydroxybutyrate, malate + pyruvate or glutamate as substrates was little affected. A number of cycles of State 4-State 3-State 4 with ADP was observed. The respiratory control ratios, however, were decreased, particularly when glutamate was used as the substrate. Cytochrome c oxidase activity was also decreased to 55% when assayed using ascorbate + N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) as substrates. Suspension of mitochondria in 0.15 m KCl resulted in an enhancement of the very low NADH oxidation by intact mitochondria and a twofold enhancement of sulfite oxidation. Trapped cytochrome c in outer membrane vesicles prepared from untreated and trypsin-treated intact mitochondria was found to be readily reduced by NADH and suggests that some cytochrome b5 is located on the inner surface of the outer membrane. The enhanced NADH oxidase could therefore reflect the ability of cytochrome c to mediate intermembrane electron transport. The enhanced sulfite oxidase activity was sensitive to cyanide inhibition and coupled to oxidative phosphorylation (ADPO < 1) unlike the activity of mitochondria in sucrose medium. These results suggest that free cytochrome c in the intermembrane space can mediate electron transfer between the sulfite oxidase and the inner membrane.  相似文献   

14.
The presequence of yeast cytochrome c1 (an inner membrane protein protruding into the intermembrane space) contains a matrix-targeting domain and an intramitochondrial sorting domain. This presequence transports attached subunit IV of cytochrome c oxidase into the intermembrane space (van Loon et al. (1987) EMBO J., 6, 2433-2439). In order to determine how this fusion protein reaches the intermembrane space, we studied the kinetics of its import into isolated mitochondria or mitoplasts and its accumulation in the various submitochondrial compartments. The imported, uncleaved fusion precursor and a cleavage intermediate were bound to the inner membrane and were always exposed to the intermembrane space; they were never found at the matrix side of the inner membrane. In contrast, analogous import experiments with the authentic subunit IV precursor, or the precursor of the iron-sulphur protein of the cytochrome bc1 complex also an inner membrane protein exposed to the intermembrane space), readily showed that these precursors were initially transported across both mitochondrial membranes. We conclude that the intramitochondrial sorting domain within the cytochrome c1 presequence prevents transport of attached proteins across the inner, but not the outer membrane: it is a stop-transfer sequence for the inner membrane. Since the presequence of the iron-sulphur protein lacks such 'stop-transfer' domain, it acts by a different mechanism.  相似文献   

15.
We have examined the effects of truncated Bid (tBid) and ceramide on mitochondrial membrane integrity and cytochrome c release, using mitochondria with intact outer membranes. While tBid permeabilizes the outer membrane and efficiently stimulates cytochrome c release, digitonin is unable to cause cytochrome c release in the absence of salt. Ceramides did not permeabilize the mitochondrial outer membrane, and stimulated cytochrome c release only in the presence of digitonin. Taken together, these observations support a model for cytochrome c release in which the first step is dissociation from the inner membrane followed by transit across the outer membrane.  相似文献   

16.
Phosphate-dependent glutaminase is associated with the inner membrane of rat renal mitochondria. The orientation of this enzyme was characterized by comparing its sensitivity in isolated mitochondria and in mitoplasts to two membrane impermeable inhibitors. Mitoplasts were prepared by repeated swelling of mitochondria in a hypotonic phosphate solution. This procedure released greater than 70% of the adenylate kinase from the intermembrane space, but less than 10 and 25% of the marker activities characteristic of the inner membrane and matrix compartments, respectively. The addition of 20 microM p-chloromercuriphenylsulfonate (pCMPS) caused a rapid inactivation of the purified glutaminase. In contrast, the glutaminase contained in isolated mitochondria and mitoplasts was only slightly affected by the addition of up to 2 mM pCMPS. Similarly, the activity in mitochondria and mitoplasts was not inhibited by the addition of an excess of inactivating Fab antibodies. However, a similar extent of inactivation occurred when either membrane fraction was incubated with concentrations of octylglucoside greater than 0.35%. Mitochondria were also treated with increasing concentrations of digitonin. At 0.4 mg digitonin/mg protein, all of the adenylate kinase was released but the glutaminase activity was either slightly inhibited or unaffected by the addition of pCMPS or the Fab antibodies, respectively. These studies establish that the glutaminase is localized on the inner surface of the inner membrane. Therefore, mitochondrial catabolism of glutamine must occur only within the matrix compartment.  相似文献   

17.
N-acetylneuraminic acid at the surfaces of rat cerebral cortex and liver mitochondria and derived mitoplasts (inner membrane plus matrix particles) was studied biochemically and electrokinetically. Rat cerebral cortex mitochondria in 0.0145 M NaCl, 4.5% sorbitol, pH 7.2 ± 0.1, 0.6 mM NaHCO3, had an electrophoretic mobility of - 2.88 ± 0.01 µ/sec per v per cm. In the same solution the electrophoretic mobility of rat liver mitochondria was - 2.01 ± 0.02, of rat liver mitoplasts was - 1.22 ± 0.07, and of rat cerebral cortex mitoplasts - 0.91 ± 0.04 µ/sec per v per cm. Treatment of these particles with 50 µg neuraminidase/mg particle protein resulted in the following electrophoretic mobilities in µ/sec per v per cm: rat cerebral cortex mitochondria, - 2.27; rat liver mitochondria, - 1.40; rat cerebral cortex mitoplasts, - 0.78; and rat liver mitoplasts, - 1.10. Rat liver mitochondria, mitoplasts, and outer mitochondrial membranes contained 2.0, 1.1, and 4.1 nmoles of sialic acid/mg protein, respectively. 10% of the liver mitochondrial protein and 27.5% of the sialic acid was solubilized in the mitoplast and outer membrane isolation procedure. Rat cerebral cortex mitochondria, mitoplasts, and outer mitochondrial membranes contained 3.1, 0.8, and 6.2 nmoles sialic acid/mg protein, respectively; 10% of the brain mitochondrial protein and 49 % of the sialic acid was solubilized in the mitoplast and outer membrane isolation solution procedure. Treatment of both the rat liver and cerebral cortex mitochondria with 50 µg neuraminidase (dry weight) /mg protein resulted in the release of about 50% of the available outer membrane sialic acid residues. Treatment of all of the particles with trypsin caused release of sialic acid but did not greatly affect the particle electrophoretic mobility. In each instance, curves of pH vs. electrophoretic mobility indicated that the particle surface contained an acid dissociable group, most likely a carboxyl group of sialic acid with pKa ∼ 2.7. Treatment of either the rat liver or the cerebral cortex mitochondria with trypsinized concanavalin A did not affect the particle electrophoretic mobility but did cause a decrease in the electrophoretic mobility of L5178Y mouse leukemic cells.  相似文献   

18.
Hou  Daorong  Fu  Heling  Zheng  Yuan  Lu  Dan  Ma  Yuanwu  Yin  Yuan  Zhang  Lianfeng  Bao  Dan 《Transgenic research》2022,31(1):107-118
Transgenic Research - Uncoupling protein 1 (UCP1) was found exclusively in the inner membranes of the mitochondria of brown adipose tissue (BAT). We found that UCP1 was also expressed in heart...  相似文献   

19.
Oxidation of exogenous NADH by isolated rat liver mitochondria is generally accepted to be mediated by endogenous cytochrome c which shuttles electrons from the outer to the inner mitochondrial membrane. More recently it has been suggested that, in the presence of added cytochrome c, NADH oxidation is carried out exclusively by the cytochrome oxidase of broken or damaged mitochondria. Here we show that electrons can be transferred in and out of intact mitochondria. It is proposed that at the contact sites between the inner and the outer membrane, a "bi-trans-membrane" electron transport chain is present. The pathway, consisting of Complex III, NADH-b5 reductase, exogenous cytochrome c and cytochrome oxidase, can channel electrons from the external face of the outer membrane to the matrix face of the inner membrane and viceversa. The activity of the pathway is strictly dependent on both the activity of the respiratory chain and mitochondrion integrity.  相似文献   

20.
Mitochondrial creatine kinase in brain mitochondria appears to be located at two different intramitochondrial sites. By using immunogold-labeling techniques, a peripheral immunoreactivity was localized between the two boundary membranes, while an additional, central immunoreactivity was found at the crista surface. The peripheral enzyme was accessible to the antibodies after treatment of the brain mitochondria with 100-300 μg digitonin/mg mitochondrial protein, which left 75% of the activity bound to the membranes. Electron microscopic analyses revealed that 43% of the labeled, peripheral creatine kinase was bound at those places where outer membrane vesicles remained attached to the inner envelope membrane, suggesting that the enzyme is in involved in contact formation between outer and inner mitochondrial membranes. Postembedding staining of mitochondria on thin sections of brain tissue or in the isolated state led to the observation of a second location of creatine kinase inside the mitochondria, along the cristae, which was not accessible to the antibodies in isolated, digitonin-treated mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号