首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 677 毫秒
1.
UVB irradiation (290-320 nm) and topical applications of arachidonic acid (AA) in mice decrease the number of identifiable Langerhans cells and alter the cutaneous immune response. Application of contact allergens such as dinitrofluorobenzene (DNFB) to irradiated or AA-treated skin induces antigen-specific tolerance. Indomethacin (IM), a cyclooxygenase inhibitor, administered orally to mice prior to UVB irradiation or prior to the topical application of arachidonic acid, abrogates suppression of contact hypersensitivity (CHS) to DNFB. This suggests a byproduct of arachidonic acid generated through the cyclooxygenase pathway may be involved in the immune suppression. Topical application of various prostaglandins (PGE2, PGD2, PGF2 alpha, and CTXA2) did not cause alterations in the population density of the identifiable Ia+ dendritic Langerhans cells. PGE2, but no other tested agent, produced a suppression of the CHS response to DNFB. These observations suggests that of the various prostaglandins, PGE2 might be one of several biochemical signals which mediate the suppression of contact hypersensitivity reactions following ultraviolet radiation exposure. However, the mechanisms by which PGE2 produces its suppressive effects have not been identified.  相似文献   

2.
The induction of skin cancers in mice by chronic UV irradiation is accompanied by a decrease in the numbers of Ia+ and Thy-1+ dendritic cells in the epidermis early in the course of UV irradiation. Subsequently, the number of Ia+ cells, but not Thy-1+ cells, increases until the time of tumor development. To assess the functional significance of these changes in cutaneous immune cells, and to help define the role these cells may play in immune surveillance against skin cancers, we tested the afferent immunologic capability of the skin during the development of UV-B radiation-induced skin cancers. Afferent immune function was measured by testing the Ag-presenting capacity of draining lymph node (DLN) cells from mice sensitized epicutaneously with dinitrofluorobenzene. A reduced contact hypersensitivity response was induced in mice immunized with DLN cells from UV-irradiated mice that had been sensitized with hapten on UV-irradiated skin. This decreased reactivity was present during the entire latent period of tumor development. However, in tumor-bearing mice, the DLN cells from UV-irradiated, sensitized animals exhibited normal Ag-presenting activity. DLN cells from UV-irradiated mice sensitized on ventral, unirradiated skin exhibited normal Ag-presenting activity. The lowest amount of Ag-presenting activity in the draining lymph nodes of UV-irradiated mice correlated temporally with the lowest number of Ia+, adenosine triphosphatase+ dendritic epidermal cells in the UV-irradiated skin. At least during the early part of the tumor latent period, an increase in the number of these cells was paralleled by an increase in the Ag-presenting activity of the DLN cells. In contrast, the number of Thy-1+ dendritic epidermal cells in UV-irradiated skin did not correlate with the Ag-presenting activity. Thus, the decrease in the number of identifiable epidermal Langerhans cells early in the course of chronic UV irradiation correlated with a decrease in Ag-presenting activity after sensitization through the UV-irradiated skin. These studies demonstrate that the afferent arm of the cutaneous immune response is impaired in the site of tumor development throughout the latent period of UV carcinogenesis.  相似文献   

3.
The immunomodulating effects of staphylococcal enterotoxins on in vivo immune responses in C57BL/6 mice were examined. Of the five serological types A (SEA), B, C, D, and E (SEE), only SEA and SEE markedly suppressed the antibody response to sheep red blood cells (SRBC) when injected 1 day before or on the day of immunization with SRBC. Further study of SEA revealed that it did not affect the antibody response to a thymus-independent antigen, salmonella flagella, but did affect the T-cell-mediated immune response. Contact sensitivity to dinitrofluorobenzene (DNFB) was suppressed when SEA was injected before sensitization or before challenge with DNFB, indicating that SEA affected both the afferent and efferent phases of DNFB contact sensitivity. As the suppression of DNFB contact sensitivity could be transferred by anti-Thy-1.2 antibody-sensitive spleen cells of SEA injected donors into normal or DNFB-sensitized recipients, the suppression was thought to be an active one. However, SEA could augment the DNFB contact sensitivity when injected on the third day after sensitization with DNFB. These results indicate that the immunomodulating effects of SEA can be mediated by the T-cell function.  相似文献   

4.
The amounts of Ia-positive and -negative macrophages were studied in peritoneal exudates of normal mice or of mice injected with various inflammatory materials, infected with Listeria monocytogenes, or injected with hemocyanin. Ia-negative macrophages predominated in exudates from normal mice or from mice given mineral oil, peptone, thioglycollate, culture media, or endotoxin. Infection with Listeria caused a very marked increase in Ia-positive macrophages. The induction of Ia-positive macrophages by Listeria inoculation resulted in great part from an immune process. The Ia-positive exudates were more readily generated in immune mice given a secondary challenge with heat-killed organisms. Furthermore, immune T cells transplanted together with heat-killed organisms into normal mice resulted in Ia-rich exudates. Injection of hemocyanin also induced Ia-rich exudates involving an immune process. We conclude that an immune reaction involving T cells regulates the Ia phenotype of the exudate macrophage population. The Ia-positive macrophages were Fc and C3 receptor positive and phagocytized latex particles.  相似文献   

5.
Application of 2,4-dinitrofluorobenzene (DNFB) to BALB/c mouse skin depleted of epidermal Langerhans cells (LC) by the chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) activated cells which suppress both contact sensitivity and antibody production when transferred into naive host mice. Tolerance was induced by a concentration of DNFB optimal for inducing contact sensitivity in solvent-treated control mice. The cellular and humoral responses of hosts to a second antigen, 2,4,6-trinitrochlorobenzene (TNCB), were unaffected by these suppressor cells, demonstrating specificity for DNFB. Suppressor cells for cellular and humoral immunity could still be demonstrated 6 months following activation, by which time some mice had died, presumably of old age. The dose responses to sensitizer for generation of cells which suppressed contact sensitivity and antibody production differed, indicating that separate populations of suppressor cells probably inhibit these responses. Hence, during cutaneous chemical carcinogenesis, depletion of LC may allow activation of specific long-lived suppressor cells capable of inhibiting cellular or humoral antitumor immune responses.  相似文献   

6.
Mouse epidermal cells express Ia antigens. Epidermal cells from C3H and B10. A mice express I-A and I-E region gene products. Products associated with I-B and I-J were not detectable. A weak reaction was seen with anti-I-C sera. Products of the I-A region appear to be preferentially expressed when compared to I-E-region gene products. Ten percent of epidermal cells possess IgG-specific Fc receptors and 15% of epidermal cells can phagocytize latex particles. Our studies suggest that Ia-positive epidermal cells in mice are not necessarily limited to Langerhans cells.  相似文献   

7.
Tolerance in contact sensitivity to DNFB can be adoptively transferred to normal mice with lymph node cells from tolerant donors. This tolerance is antigen specific and is mediated by T cells, i.e., "suppressor" T cells. Experiments were carried out to investigate the mechanism(s) by which the suppressor T cells induce tolerance to DNFB contact sensitivity. The suppressor cells were effective only if they were present during the early stages of the afferent limb of sensitization. As measured by DNA synthesis, cell proliferation in the draining lymph nodes of recipients of suppressor cells was found to be significantly less than in control animals indicating that the suppressor cells acted, at least in part, by limiting or inhibiting DNFB-induced cell proliferation. This inhibition was shown to be antigen specific since the DNFB suppressor cells did not inhibit cell proliferation induced by oxazolone, an unrelated contact sensitizer. The ability to DNFB tolerant cells to block afferent sensitization pathways differs from the mechanism of tolerance to picryl chloride, reported by others, where efferent pathways are blocked.  相似文献   

8.
Since treatment of mouse skin with the chemical carcinogen 7,12-dimethylbenz[alpha]anthracene (DMBA) substantially decreases the density of cutaneous Langerhans cells (LC), the immune status of mice sensitized to 2,4-dinitrofluorobenzene (DNFB) through DMBA-treated skin was investigated. Mice did not develop contact sensitivity to DNFB when applied to DMBA-treated dorsal trunk skin, whereas sensitization resulted when DNFB was applied to untreated abdominal wall skin. Mice immunized with DNFB via DMBA-treated skin did not respond to subsequent immunization through untreated dorsal trunk skin, demonstrating the generation of suppressor cells which could inhibit the activation of effector lymphocytes. Adoptively transferred spleen cells from mice immunized with DNFB through DMBA-treated skin inhibited the response of sensitized hosts, indicating the presence of efferently acting suppressor cells which could inhibit the function of effector lymphocytes. This study has demonstrated that sensitization via skin depleted of LC by chemical carcinogen treatment induces an active state of tolerance rather than immunity.  相似文献   

9.
Topical applications of monobenzylether of hydroquinone (MBEH) or intraperitoneal injections of phenol induced graying of hair in eumelanic mice but had little effect on hair color in pheomelanic mice. Amcinonide, an anti-inflammatory agent, elicited whitening of a few hairs in both pheomelanic and eumelanic mice. In phenol-treated eumelanic mice, damaged follicular melanocytes were uprooted from hair bulbs and incorporated into the developing hair. The fate of follicular melanocytes in MBEH- or amcinonide-treated mice was not determined since hair growth and graying were more variable than in phenol-treated mice. In contrast to the susceptibility of eumelanic hair follicles to depigmentation by phenol or MBEH, the tail skin of eumelanic or pheomelanic mice was not depigmented by these agents. Overall, during the 3 week period of treatment that was sufficient for phenol or MBEH to elicit graying of hair, epidermal melanocytes of the tails of eumelanic or pheomelanic mice either failed to respond (phenol) or were stimulated in their "proliferative" and melanogenic activity (MBEH). In contrast, amcinonide brought about a marked reduction in the numbers of DOPA-positive epidermal melanocytes inhabiting the tails of eumelanic or pheomelanic mice. Amcinonide exerted a deleterious influence on the structure and function of tail epidermis. Its actions were partly reversed by simultaneous treatment with MBEH but not with prostaglandin (PGE2).  相似文献   

10.
Previous reports have shown that picryl sulfonic acid (PSA) induces suppressor T cells that inhibit the effector phase of contact sensitivity, whereeas its DNP counterpart, dinitrobenzenesulfonate (DNBS) induces cells that inhibit the afferent phase of sensitization. Accordingly, cells from mice injected with DNBS, but not PSA, could be shown to inhibit the DNA synthesis in the lymph nodes that occurs during sensitization. It is now shown that PSA does induce T cells that suppress DNA synthesis but this can only be detected with enriched T cells or by using a regimen of PSA injection different frm previously used to induce suppressor cells for the effector phase. The T cells did not affect responses to oxazolone or dinitrofluorobenzene (DNFB) and were distinguishable from suppressors of the efferent phase in that they could be produced in adult thymectomized but not cyclophosphamide-treated mice. T cells from mice injected with DNBS that inhibited DNA synthesis to DNFB had the same properties.  相似文献   

11.
Epicutaneous application of dinitrothiocyanobenzene (DNTB) induces tolerance against its related compound dinitrofluorobenzene (DNFB), because DNTB-pretreated mice cannot be sensitized against the potent hapten DNFB. This tolerance is hapten-specific and transferable. In this study, we demonstrate that IL-12 can break DNTB-mediated tolerance. Furthermore, naive mice treated with IL-12 before DNTB application responded to DNFB challenge with a pronounced ear swelling response without previous sensitization to DNFB, showing that IL-12 can convert the tolerogen DNTB into an immunogen. No differences in numbers or regulatory activity were observed between CD4+CD25+ regulatory T cells isolated from mice treated with DNFB, DNTB, or IL-12 followed by DNTB. However, the number of CD207+ Langerhans cells in regional lymph nodes of DNTB-treated mice was significantly lower than in animals treated with DNFB or IL-12 plus DNTB. Additionally, CD11c+ dendritic cells (DC) isolated from regional lymph nodes of DNTB-treated mice had a significantly lower ability to stimulate T cell proliferation and produced reduced amounts of inflammatory cytokines. Application of both DNFB and DNTB induced apoptotic cell death of DC in the epidermis and the regional lymph nodes. However, the number of apoptotic DC in regional lymph nodes was significantly higher in DNTB-treated animals compared with mice treated with DNFB or IL-12 plus DNTB. Therefore, we conclude that DNTB-mediated tolerance is secondary to inefficient Ag presentation as a result of apoptotic cell death of DC and that IL-12 converts the tolerogen DNTB into an immunogen by preventing DNTB-induced apoptosis of DC.  相似文献   

12.
Langerhans cells (LCs) serve as epidermal sentinels of the adaptive immune system. Conventional wisdom suggests that LCs encounter Ag in the skin and then migrate to the draining lymph nodes, where the Ag is presented to T cells, thus initiating an immune response. Platelet-activating factor (PAF) is a phospholipid mediator with potent biological effects. During inflammation, PAF mediates recruitment of leukocytes to inflammatory sites. We herein tested a hypothesis that PAF induces LC migration. Applying 2,4-dinitro-1-fluorobenzene (DNFB) to wild-type mice activated LC migration. In contrast, applying DNFB to PAF receptor-deficient mice or mice injected with PAF receptor antagonists failed to induce LC migration. Moreover, after FITC application the appearance of hapten-laden LCs (FITC+, CD11c+, Langerin+) in the lymph nodes of PAF receptor-deficient mice was significantly depressed compared with that found in wild-type mice. LC chimerism indicates that the PAF receptor on keratinocytes but not LCs is responsible for LC migration. Contrary to the diminution of LC migration in PAF receptor-deficient mice, we did not observe any difference in the migration of hapten-laden dermal dendritic cells (FITC+, CD11c+, Langerin-) into the lymph nodes of PAF receptor-deficient mice. Additionally, the contact hypersensitivity response generated in wild-type or PAF receptor-deficient mice was identical. Finally, dermal dendritic cells, but not LCs isolated from the draining lymph nodes after hapten application, activated T cell proliferation. These findings suggest that LC migration may not be responsible for the generation of contact hypersensitivity and that dermal dendritic cells may play a more important role.  相似文献   

13.
The objective of the present study was to investigate the mechanism of antigen migration from the site of initial localization in the lymph node subcapsular sinus (SS) to regions of follicular retention in the cortex. The migration of horseradish peroxidase (HRP), used as a histochemically identifiable antigen, was followed by light and electron microscopy in C3H mouse popliteal lymph nodes obtained 1, 5, 15, and 30 min, and 5 and 24 hr after hindfoot pad injection of HRP. The observations showed that as early as 1 min after HRP injection, localization of antigen occurred at distinct sites in the SS and subjacent areas of the cortex on the afferent side. At these sites, between 1 min and 24 hr, the antigen formed light microscopically identifiable trails, which reached progressively deeper into the cortex with time toward individual follicular regions. By 24 hr this apparent migration of antigen was complete, and HRP was localized in follicles. This migration pattern did not occur on the efferent sides of lymph nodes, and it was dependent on the systemic presence of specific antibodies since it was observable only in passively immunized but not in nonimmune mice. Temporary retention of antigen by typical macrophages was also observed in the SS on the efferent side. This was minimal in nonimmune mice and was significantly enhanced in passively immunized mice. Electron microscopy indicated that the apparent migration of immune complexes was mediated by a group of cells observed in the migration path that had immune complexes sequestered on their surface or in plasma membrane infoldings. These antigen transporting cells (ATC) were relatively large nonphagocytic cells, with lobated or irregular euchromatic nuclei and cell processes of various complexity. ATC observed in or near the SS appeared to be less differentiated, were monocyte-like, and resembled non-Birbeck granule-containing Langerhans cell precursors or veiled cells. Others, located deeper in the cortex, appeared more differentiated, interdigitated with antigen-retaining dendritic cells, and shared morphologic characteristics with follicular dendritic cells (FDC). The results support the concepts that immune complexes are trapped in the SS and are transported by a group of non-phagocytic cells, other than lymphocytes, to follicular regions. The mechanism of transport may involve the migration of ATC with a concomitant maturation into FDC, or by a mechanism of ATC to FDC transport utilizing dendritic cell processes and membrane fluidity, or by a combination of the two mechanisms.  相似文献   

14.
Effects of a range (2-50 Gy) of single doses of 250 kV X rays on epidermal Langerhans cells in vivo were quantified in groups of CBA/CaH mice. Animals were sacrificed and compared with controls on the 10th day after local irradiation of their hind feet, when Langerhans cell numbers were at a minimum. ATPase-positive Langerhans cells in sheets of footpad epidermis were counted by light microscopy and cells with Birbeck granules were enumerated by electron microscopy. Both methods revealed a dose-dependent loss of Langerhans cells after ionizing radiation. Fifty percent of the ATPase-positive cells were lost after 14.4 +/- 1.3 Gy, and 50% of Birbeck granule-containing cells were lost after 17.9 +/- 4.2 Gy, suggesting that differentiated epidermal Langerhans cells are radioresistant. Loss of equivalent proportions of ATPase-positive and ultrastructurally identifiable cells after a range of doses indicates that X rays do not merely alter Langerhans cell surface markers but actually deplete the epidermal population of these cells.  相似文献   

15.
Summary Large mononuclear cells with long, actively moving cytoplasmic veils were observed in lymph coming from the skin. The enzyme histochemistry and ultrastructure of these cells suggested that they are related to epidermal Langerhans cells and interdigitating cells in the lymph node. It has been reported that Langerhans cells and interdigitating cells play a role in contact hypersensitivity by taking up antigen and presenting it to thymus-dependent lymphocytes, and it is likely that the veiled cells in the lymph are also involved.After skin-painting with 1-fluoro-2,4-dinitrobenzene (DNFB), the veiled cells in lymph coming from the site of painting became more active and were observed contacting other cells present in the lymph; many large cellular aggregates were found. Since neutrophilic leucocytes and mononuclear phagocytes were the predominating cell types in this lymph, there was no evidence for a massive recruitment of immunocompetent lymphocytes at the site of painting.Neonatally thymectomized pigs do not develop allergic reactivity to DNFB. It is of interest that the number of veiled cells and their ability to form large cellular aggregates was not affected in these animals. Therefore, it is unlikely that the defect in responsiveness can be attributed to a failure in the function of veiled cells.  相似文献   

16.
Prethymic T cell precursors express receptors for antigen   总被引:1,自引:0,他引:1  
An anti-idiotype serum raised in BALB/c mice against syngeneic lymph node T cells from 2,4-dinitrofluorobenzene (DNFB)-sensitized mice was used to study the early expression of antigen receptors on developing T cells. Normal BALB/c bone marrow cells were treated with either anti-Thy-1.2 plus complement or anti-Thy-1.2 and anti-idiotype plus complement before use in the reconstitution of lethally irradiated syngeneic mice. Five weeks after reconstitution, recipient mice were assayed for both contact sensitivity (CS) and in vitro proliferative responses to DNFB. Mice reconstituted with bone marrow cells treated with both anti-Thy and anti-idiotype sera showed a significant decrease in reactivity to DNFB in both assay systems when compared with mice reconstituted with marrow treated with anti-Thy only. CS response to the noncross-reacting hapten oxazolone was identical in both recipient groups. Bone marrow mixing experiments showed no evidence of anti-idiotype-induced suppressor cells in these experiments. These data provide strong evidence that at least some T cell precursors express receptors for antigen prethymically.  相似文献   

17.
The genetic basis of the effects of ultraviolet B(UVB) radiation on the induction of contact hypersensitivity (CH) to dinitrofluorobenzene (DNFB) has been explored in genetically defined mice. It was found that acute, low-dose UVB radiation produced profound depletion of epidermal Langerhans cells (LC) at UVB-treated sites in all strains of mice tested. However, when DNFB was applied to UVB radiation sites, unresponsiveness developed in some strains of mice, but vigorous contact hypersensitivity was induced in others. The UVB-susceptible phenotype proved dominant or codominant in F1 hybrids derived from parental strains of the susceptible and UVB-resistant phenotypes. Experiments conducted in one set of F1 hybrids derived from two UVB-susceptible parental strains displayed UVB resistance, suggesting gene complementation, and showed that more than one genetic locus was involved. Segregant backcross populations, analyzed for the capacity to develop CH after UVB treatment and skin painting with DNFB, revealed that at least two, and probably three, independent genetic loci participate in determining UVB resistance. Results of experiments with H-2 congenic and recombinant mice derived from the B10 background implicated class I genes of the major histocompatibility complex as relevant genetic factors. These results indicate that there is a dissociation between the effects of UVB radiation on epidermal Langerhans cells and the capacity of a cutaneous surface to support the induction of contact hypersensitivity. The data indicate that the induction of CH to haptens is dependent on normal numbers of functional LC at the skin painting site only in some strains of mice. The data imply that in the so-called UVB-resistant strains of mice, alternative (non-Langerhans cell-dependent) mechanisms allow for the induction of CH. Several independent genetic loci, one of which appears to be H-2, govern this UVB-related effect.  相似文献   

18.
UV radiation-induced regulatory T cells (UV-Treg) inhibit the sensitization but not the elicitation of contact hypersensitivity when injected i.v. Because UV-Treg express the lymph node homing receptor CD62 ligand, upon i.v. injection they migrate into the lymph nodes but not into the periphery and therefore inhibit sensitization but not elicitation. We tried to modify the migratory behavior of UV-Treg with the aim to get them into the periphery and thereby to suppress the effector phase of immune reactions. Because the tissue selective homing of T effector cells is determined by tissue-specific dendritic cells (DC), we attempted to reprogram the migratory behavior of UV-Treg by DC. 2,4-Dinitrofluorobencene (DNFB)-specific UV-Treg coincubated with epidermal Langerhans cells (LC) blocked the elicitation upon i.v. injection into DNFB-sensitized mice. In contrast, i.v. injection of UV-Treg not incubated with LC did not inhibit the ear challenge. The same negative effect was observed for UV-Treg coincubated with DC from bone marrow, spleen, or lymph nodes. This effect was not due to different maturation stages as checked by MHC class II expression of the different DC types. Incubation with LC but not with bone marrow-derived DC down-regulated the expression of CD62 ligand on UV-Treg. Accordingly, CFDA-SE labeled UV-Treg coincubated with LC were found in the ears but not in the lymph nodes upon i.v. injection. This finding shows that the migratory behavior can be reprogrammed by tissue-specific DC and may have input on strategies trying to use Treg not only for the prevention but also for the treatment of immune-mediated diseases.  相似文献   

19.
The afferent arc of the in vivo cytotoxic T-cell immunity assessed by second set rejection of ascitic allogeneic tumors was shown to be depressed by bacterial lipopolysaccharide (LPS) that was administered simultaneously with or 1 day before injection of allogeneic spleen cells as stimulators. Two different LPSs from Escherichia coli O55 and Klebsiella O3 displayed similar activities whereas dextran sulfate, concanavalin A, or poly A:U was not effective. Stimulator activities of allogeneic cells was not directly modified by LPS. Any definite suppressor activity on afferent or efferent arc of the T-cell response was not demonstrable in mice receiving LPS and allogeneic cells. Further, the LPS effect for immune depression was not diminished by whole body X-ray irradiation to the recipient at 300 R, which ablated the B-cell reactivity to LPS for polyclonal activation, or by treatment of the recipient with carrageenan, a known toxic agent to macrophages. It was suggested from these results that LPS suppresses the cytotoxic T-cell immunity by modulating responder T cells to be temporarily refractory to the allogeneic stimulus rather than by activating suppressor cells such as radiation-sensitive lymphocytes and carrageenan-sensitive macrophages.  相似文献   

20.
It has been recognized for over a century that the anterior chamber of the eye is endowed with a remarkable immune privilege. One contributing component is the Ag-specific down-regulation of systemic delayed-type hypersensitivity (DTH) that is induced when Ags are introduced into the anterior chamber. This phenomenon, termed anterior chamber-associated immune deviation (ACAID), culminates in the generation of regulatory cells that inhibit the induction (afferent suppression) and expression (efferent suppression) of DTH. Since gamma delta T cells play a major role in other forms of immune regulation, we suspected they might contribute to the induction and expression of ACAID. Mice treated with anti-gamma delta Ab failed to develop ACAID following anterior chamber injection of either soluble Ag (OVA) or alloantigens (spleen cells). Additional experiments with knockout mice confirmed that mice lacking functional gamma delta T cells also fail to develop ACAID. Using a local adoptive transfer of DTH assay, we found that gamma delta T cells were required for the generation of regulatory T cells, but did not function as the efferent regulatory cells of ACAID. The importance of gamma delta T cells in corneal allograft survival was confirmed by blocking gamma delta T cells with GL3 Ab before corneal transplantation. While in vivo treatment with normal hamster serum had no effect on corneal graft survival, infusion of anti-gamma delta Ab resulted in a profound increase in corneal allograft rejection. Thus, gamma delta T cells are needed for sustaining at least one aspect of ocular immune privilege and for promoting corneal allograft survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号