首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compatibility of Soil Amendments with Entomopathogenic Nematodes   总被引:1,自引:0,他引:1  
The impact of inorganic and organic fertilizers on the infectivity, reproduction, and population dynamics of entomopathogenic nematodes was investigated. Prolonged (10- to 20-day) laboratory exposure to high inorganic fertilizer concentrations inhibited nematode infectivity and reproduction, whereas short (1-day) exposures increased infectivity. Heterorhabditis bacteriophora was more sensitive to adverse effects than were two species of Steinernema. In field studies, organic manure resulted in increased densities of a native population of Steinernema feltiae, whereas NPK fertilizer suppressed nematode densities regardless of manure applications. Inorganic fertilizers are likely to be compatible with nematodes in tank mixes and should not reduce the effectiveness of nematodes used for short-term control as biological insecticides, but may interfere with attempts to use nematodes as inoculative agents for long-term control. Organic manure used as fertilizer may encourage nematode establishment and recycling.  相似文献   

2.
Single, double and triple releases of the entomopathogenic nematode Heterorhabditis bacteriophora Poinar, reduced the population of the beetle Maladera matrida Argaman, infesting peanuts (’Shulamit’ cv.) by 70, 75 and 93% respectively in microplot tests. Simultaneous and late (2 weeks after infestation) applications reduced beetle numbers by 63 and 79% respectively, in the microplots, while early application (2 weeks prior to infestation) did not reduce the beetle population. In a field trial, reductions in insect population and damage to the crop were achieved by early treatment with the nematode as well as by Heptachlor, leading to reductions in the insect population of 60 and 90% respectively, when recorded 4 weeks after nematode application. However, the nematode treatment did not maintain its effectiveness for a longer period and pest damage increased to the same level as the untreated control after 7 weeks. When the nematodes were applied at different concentrations (0.25–1.0 x 106 infective juveniles (IJs) m‐2) their effectiveness was not related to the concentration level. The only significant (P < 0.05) reduction in insect levels was recorded in the treatment with 0.5 X 106 IJs m‐2. In a second field trial, both H. bacteriophora and Steinernema glaseri reduced insect populations significantly (P < 0.05) by approximately 50% in comparison to the control. In the third trial, treatment with H. bacteriophora resulted in a decrease in insect population of 90% while treatment with S. carpocapsae reduced the grub numbers by 40% in comparison to the control. A differential susceptibility of various grub developmental stages was recorded in the field. The small grubs (I‐4 mm long, lst‐2nd larval stage) were not affected by the nematode treatments while the numbers of medium and large size grubs were reduced by 2‐ and 3‐fold respectively in the various tests. Nematodes were recovered by ‘nematode traps’ containing Galleria mellonella larvae from treated field plots 78 days after application. The implications of the results from the present studies on the use of entomopathogenic nematodes are discussed in relation to the development of an integrated pest management programme.  相似文献   

3.
Control of Delia radicum (cabbage maggot) in field collards (Brassica oleracea) was compared after one or two applications of entomopathogenic nematodes, Steinernema carpocapsae (All strain) and Heterorhabditis bacterophora (HP88 strain), a single application of granular chlorpyrifos, and a water-only treatment. Nematodes were applied with a sprayer during the egg stage of first-generation D. radicum, and chlorpyrifos was hand placed around collard stems during the same period. A second nematode application was made 10 days later. Chlorpyrifos treatment resulted in fewer puparia per plant, less root damage and higher yield than all other treatments, including the control. Collard yield from nematode-treated beds did not differ from controls. These data indicate that, under these field conditions, the species or strains of entomopathogenic nematodes tested did not reduce the number of active cabbage maggots, nor did they prevent collard root damage.  相似文献   

4.
Plum sawflies are among the most damaging pests of European plum. Current control strategy implies insecticide application. Three species of entomopathogenic nematodes (EPN), Steinernema feltiae Filipjev, S. carpocapsae Weiser and Heterorhabditis bacteriophora Poinar were tested under laboratory and field conditions to assess effectiveness against larval and adult stages. Laboratory tests resulted in up to 100% mortality of last instar larvae before construction of a cocoon. However, the nematodes were not able to penetrate the cocoon. Foliar application did not result in plum sawflies larvae infestation by EPNs. Under field conditions, the nematodes reduced the number of emerging adults by application against sawfly larvae in the previous year before migration into the soil for overwintering by 62%–92%. Application of the nematodes against adults just before their anticipated emergence resulted in reduction of fruit infestation up to 100%. Mean results of 5 trials using caged trees were 47.8% with S. feltiae, 56.3% with S. carpocapsae and 62.9% with H. bacteriophora. In open field trails, control of adults obtained with S. feltiae at 0.5 million nematodes/m2 was 98.2 and 67.8% and at 0.25 million m−2 41.7 and 41.2%. Forecasting adult emergence and optimal soil moisture conditions are essential for success of the nematode application.  相似文献   

5.
The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.  相似文献   

6.
Entomopathogenic nematodes (EPNs) have been utilized in classical, conservation, and augmentative biological control programs. The vast majority of applied research has focused on their potential as inundatively applied augmentative biological control agents. Extensive research over the past three decades has demonstrated both their successes and failures for control of insect pests of crops, ornamental plants, trees and lawn and turf. In this paper we present highlights of their development for control of insect pests above and below ground. The target insects include those from foliar, soil surface, cryptic and subterranean habitats. Advances in mass-production and formulation technology of EPNs, the discovery of numerous efficacious isolates/strains, and the desirability of reducing pesticide usage have resulted in a surge of commercial use and development of EPNs. Commercially produced EPNs are currently in use for control of scarab larvae in lawns and turf, fungus gnats in mushroom production, invasive mole crickets in lawn and turf, black vine weevil in nursery plants, and Diaprepes root weevil in citrus in addition to other pest insects. However, demonstrated successful control of several other insects, often has not lead to capture of a significant share of the pesticide market for these pests.  相似文献   

7.
Exposure to NaC1, KCI, and CaCl₂ affected the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema glaseri differently. Survival, virulence, and penetration efficiency of S. glaseri were not affected by these salts. At high concentrations, however, all three salts inhibited its ability to move through a soil column and locate and infect a susceptible host. Calcium chloride and KCl had no effect on H. bacteriophora survival, penetration efficiency, or movement through a soil column, but moderate concentrations of these salts enhanced H. bacteriophora virulence. NaCl, however, adversely affected each of these parameters at high salinities (>16 dS/m). Salt effects on S. glaseri are attributed solely to interference with nematode host-finding ability, whereas the NaCl effects on H. bacteriophora are attributed to its toxicity and possibly to interference with host-finding behavior.  相似文献   

8.
Steinernema carpocapsae (Weiser) strain A11, S. feltiae (Filipjev) strain SN, and Heterorhabditis bacteriophora Poinar strains HP88 and Georgia were tested for their efficacy as biological control agents of the pecan weevil, Curculio caryae (Horn), in pecan orchard soil-profile containers under greenhouse conditions. Percentage C. caryae parasitism by S. carpocapsae and H. bacteriophora strain HP88 and Georgia was consistently poor when applied either prior to or following C. caryae entry into the soil, suggesting that these nematode species and (or) their enterobacteria are poor biological control agents of weevil larvae. Soil taken 21 days following application of S. carpocapsae or H. bacteriophora strain HP88 induced a low rate of infection of Galleria mellonella larvae, whereas soil that had been similarily treated with H. bacteriophora strain Georgia induced a moderate rate of infection. Percentage C. caryae parasitism by S. feltiae was consistently low when applied following C. caryae entry into the soil and was inconsistent when applied as a barrier prior to entry of weevil larvae into the soil. Soil taken 21 days following application of S. feltiae induced a high rate of infection of G. mellonella larvae.  相似文献   

9.
Rearing conditions have been shown to affect several aspects of entomopathogenic nematode biology, including dispersal behavior and infectivity. The present study explores the differences in development rate of Heterorhabditis bacteriophora and Steinernema carpocapsae when infective juveniles (IJ) were collected in water using the standard White trap method vs. natural emergence from cadavers into sand. We exposed Galleria mellonella to IJ entompopathogenic nematodes treated in one of three ways: collected in a White trap, allowed to emerge directly into sand, or collected in a White trap and treated with a cadaver homogenate. When S. carpocapsae IJ were allowed to emerge from cadavers directly into sand and then allowed to infect new hosts, they developed into adults at a faster rate than IJ that were collected with White traps. The difference in development was not due to differential infection rates. No difference in development stages was detected amount the same H. bacteriophora treatments.  相似文献   

10.
Codling moth (CM), Cydia pomonella (L.) is the most serious pest of apple and other pome fruit worldwide. In temperate climates, diapausing cocooned larvae make up 100% of the population. Control of this stage would reduce or eliminate damage by first generation CM in late spring and early summer. Entomopathogenic nematodes (EPNs) are good candidates for control of CM in the cryptic habitats where the larvae overwinter. The two predominant limiting factors for EPNs are adequate moisture and temperatures below 15°C. Formulation that maintains moisture and enables survival of EPN infective juveniles (IJs) until they can infect overwintering larvae would significantly improve their utility for protection of apple, pear and walnut. In laboratory studies conducted in moist mulch (consisting of apple and conifer wood), Galleria mellonella (L.) larvae infected with Steinernema carpocapsae (Weiser), S. feltiae (Filipjev), or Heterorhabditis bacteriophora Poinar and coated with starch and clay, produced mean mortalities of 42, 88, and 24%, respectively in CM larvae. Mulched field plots treated with formulated S. carpocapsae- or S. feltiae-infected G. mellonella larvae, then followed by an application of wood flour foam as an anti-desiccant, resulted in 56 and 86% mortality, respectively. Comparative tests of aqueous suspensions of S. carpocapsae IJs applied to cardboard bands on apple tree trunks followed by water, fire retardant gel or foam resulted in 11, 35, and 85% respective mortalities. Identical tests with S. feltiae resulted in 20, 19, and 97% respective mortalities. Our research with cadaver formulations of EPNs in mulch and aqueous suspensions on tree trunks combined with anti-desiccant agents, demonstrated significant improvement in larvicidal activity for diapausing cocooned CM larvae.  相似文献   

11.
To assess the effect of an inundative release of entomopathogenic nematodes on soil organisms, population densities of soil-dwelling organisms were monitored before and after an application of an aqueous suspension of Heterorhabditis megidis to field plots in mown grassland (Exp. I) at a level of 0.38 million/m2 and to plots (Exp. II) situated in a forested area, a grass sports field and an orchard at a level of 1.5 million/m2. At the forested site, heat-killed H. megidis (1.5 million/m2) also were applied to two plots to compare the impact on soil organisms of a large introduction of living and dead nematodes. Post-treatment, temporary changes in natural population densities of several nematode genera and other organisms were detected in H. megidis-treated plots in both experiments. Temporary changes in the nematode trophic structure occurred in the percentages of nematode omnivores, herbivores and predators in both experiments. Evidence from all sites suggests that the changes were temporary and that the presence of decaying H. megidis following treatment contributed to nutrient enrichment of the soil and to direct and indirect effects on the nematode community.  相似文献   

12.
Laboratory microcosms were used to: i) measure the effects of soil moisture on survival of Steinernema riobravis and ii) investigate the suitability of using microcosms to study motility and survival of these nematodes. Nematodes recovered from soil contained in petri dishes declined by more than 95% during 7 days, whereas nematodes recovered from the inner surfaces of dishes increased 35-fold. After 7 days in dishes, >20 times as many nematodes were recovered from dish surfaces than from soil. Nematodes exhibited a negative geotropism; greater numbers of nematodes were recovered from the lid surfaces than from the surfaces of dishes. Survivorship of nematodes in soil in plastic centrifuge tubes was somewhat greater than in petri dishes, and fewer nematodes ascended above the soil line in tubes than dishes. Downward migration of nematodes was inversely related to soil column diameter, possibly due to relatively unimpeded movement along container surfaces. An assay was developed by which nematodes were rinsed from the inner surfaces of centrifuge tubes into the soil. The resulting slurry was then processed on Baermann trays to recover motile nematodes. Nematode survival in soil in centrifuge tubes was higher at soil moistures between 2-4% than at lower (0.5-1.0%) and higher (4.0-12.0%) moisture levels. Survival of S. riobravis may be enhanced by quiescence induced by moisture deficits.  相似文献   

13.
The peachtree borer, Synanthedon exitiosa (Say 1823), is a major pest of stone fruit trees in North America. Current management relies upon preventative control using broad-spectrum chemical insecticides, primarily chlorpyrifos, applied in the late summer or early fall. However, due to missed applications, poor application timing, or other factors, high levels of S. exitiosa infestation may still occur and persist through the following spring. Curative treatments applied in the spring to established infestations would limit damage to the tree and prevent the next generation of S. exitiosa from emerging within the orchard. However, such curative measures for control of S. exitiosa do not exist. Our objective was to measure the efficacy of the entomopathogenic nematode, Steinernema carpocapsae, as a curative control for existing infestations of S. exitiosa. In peach orchards, spring applications of S. carpocapsae (obtained from a commercial source) were made to infested trees and compared with chlorpyrifos and a water-only control in 2014 and 2015. Additionally, types of spray equipment were compared: nematodes were applied via boom sprayer, handgun, or trunk sprayer. To control for effects of application method or nematode source, in vivo laboratory-grown S. carpocapsae, applied using a watering can, was also included. Treatment effects were assessed 39 d (2014) or 19 d (2015) later by measuring percentage of trees still infested, and also number of surviving S. exitiosa larvae per tree. Results indicated that S. carpocapsae provided significant curative control (e.g., >80% corrected control for the handgun application). In contrast, chlorpyrifos failed to reduce S. exitiosa infestations or number of surviving larvae. In most comparisons, no effect of nematode application method was detected; in one assessment, only the handgun and watering can methods reduced infestation. In conclusion, our study indicates that S. carpocapsae may be used as an effective curative measure for S. exitiosa infestations.  相似文献   

14.
Tomato seedlings in a growth chamber were inoculated with 150 Meloidogyne incognita eggs and 25 infective juveniles (IJ)/cm² of Steinernema feltiae, S. riobrave, or Heterorhabditis bacteriophora. With the exception of seedling roots treated with H. bacteriophora, all seedlings treated with entomopathogenic nematodes had fewer M. incognita juveniles inside roots and produced fewer eggs than the control seedlings. Tomato plants in the greenhouse were infested with 4,000 M. incognita eggs and treated 2 weeks before, 1 week before, at the same time, 1 week after, or 2 weeks after with 25 or 125 IJ/cm² of S. feltiae, S. riobrave, or H. bacteriophora. Plants with pre- and post-infestation applications of S. feltiae or S. riobrave suppressed M. incognita. Plants treated with H. bacteriophora 1 week before and at the time of infestation suppressed M. incognita. Increasing the rate of H. bacteriophora and S. feltiae from 25 to 125 IJ/cm² improved M. incognita suppression.  相似文献   

15.
The vertical and horizontal spatial patterns of a naturally occurring population of the entomopathogenic nematode Steinernema riobravis (Rhabditida: Steinernematidae) were investigated in corn field soil by laboratory and field bioassays. This nematode appears to be endemic to the Lower Rio Grande Valley of Texas, where it was found parasitizing prepupae and pupae of both corn earworm, Helicoverpa zea, and fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Corn earworm prepupa was the bioassay host used to detect S. riobravis from soil in previously harvested corn plots. Steinernema riobravis occurred at soil depths of 5-30 cm. The maximum nematode density was in the upper 20 cm of soil, and the lowest density occurred at soil depth of 25-30 cm. The field and laboratory bioassays performed on the top 20 era of soil resulted in S. riobravis-infected corn earworm of 49 and 34%, respectively, whereas at 25-30 cm soil depths 11 and 4.5% of the H. zea were infected, respectively. The horizontal spatial pattern of this nematode was patchy or aggregated. Our study provides new information on the spatial pattern of S. riobravis in its natural habitat and indicates the need to augment its natural biocontrol efficacy.  相似文献   

16.
The impact of the nematode-parasitic fungus Hirsutella rhossiliensis on the effectiveness of Steinernema carpocapsae, S. glaseri, and Heterorhabditis bacteriophora against Galleria mellonella larvae was assessed in the laboratory. The presence of Hirsutella conidia on the third-stage (J3) cuticle of S. carpocapsae and H. bacteriophora interfered with infection of insect larvae. Conidia on the J3 cuticle of S. glaseri and on the ensheathing second-stage cuticle of H. bacteriophora did not reduce the nematodes'' ability to infect larvae. The LD₅₀ values for S. carpocapsae, S. glaseri, and H. bacteriophora in sand containing H. rhossiliensis were not different from those in sterilized sand when Galleria larvae were added at the same time as the nematodes. However, when Galleria larvae were added 3 days after the nematodes, the LD₅₀ of S. glaseri was higher in Hirsutella-infested sand than in sterilized sand, whereas the LD₅₀ of H. bacteriophora was the same in infested and sterilized sand. Although the LD₅₀ of S. carpocapsae was much higher in Hirsutella-infested sand than in sterilized sand, the data were too variable to detect a significant difference. These data suggest that H. bacteriophora may be more effective than Steinernema species at reducing insect pests in habitats with abundant nematode-parasitic fungi.  相似文献   

17.
Control of Diaprepes abbreviatus by endemic and exotic entomopathogenic nematodes (EPN) was monitored during 2000-2001 in two citrus orchards in central Florida (Bartow and Poinciana). Caged sentinel insect larvae were buried beneath citrus trees for 7 days at 1 to 2-month intervals from April to October each year. At Bartow, the survey occurred in experimental plots that were (i) not treated with commercial EPN, (ii) treated twice annually since 1998 with commercially formulated Steinernema riobrave, or (iii) treated twice annually with S. riobrave and liquid fertilization (15 times/year) occurred in place of dry fertilizer (3 times/year) used in the other treatments. Four endemic EPN species, in addition to S. riobrave, were recovered from the sandy soil at Bartow: S. diaprepesi, Heterorhabditis zealandica, H. indica, and H. bacteriophora. Mean insect mortality in control plots was 39.4% (range = 13% to 74%), with seasonal maxima in May to July each year. Endemic EPN were recovered from 55% (range = 22% to 81%) of the cadavers each month. Total numbers of endemic EPN recovered in all plots during 2 years were directly related to the numbers of adult weevils (D. abbreviatus and Pachnaeus litus) captured in modified Tedder''s traps and inversely related to recovery of S. riobrave. Insect mortality was higher and cadavers containing endemic EPN were more numerous in untreated control plots than in S. riobrave-treated plots, except during months in which S. riobrave was applied. In treated plots, endemic EPN were recovered from cadavers at twice the rate of S. riobrave. Suppression of endemic EPN in plots treated with S. riobrave, combined with inferior persistence by the introduced species, may have attenuated the net efficacy of S. riobrave against D. abbreviatus. In contrast, H. indica was the only endemic nematode recovered from the sandy clay loam soil at Poinciana, where the average mortality of D. abbreviatus was 12% (range 3% to 20%) and incidence of H. indica did not exceed 8%. Results of these surveys suggest that the regional patterns in the abundance and damage to citrus caused by D. abbreviatus in Florida are regulated by endemic EPN and other soilborne enemies of the weevil.  相似文献   

18.
Entomopathogenic nematodes are potent biopesticides that can be mass-produced by in vitro or in vivo methods. For in vivo production, consistently high infection rates are critical to efficiency of the process. Our objective was to optimize in vivo inoculation of Steinernema carpocapsae and Heterorhabditis bacteriophora in Galleria mellonella and Tenebrio molitor by determining effects of inoculation method, nematode concentration, and host density. We found immersing hosts in a nematode suspension to be approximately four times more efficient in time than pipeting inoculum onto the hosts. The number of hosts exhibiting signs of nematode infection increased with nematode concentration and decreased with host density per unit area. This is the first report indicating an effect of host density on inoculation efficiency. We did not detect an effect of nematode inoculum concentration on nematode yield per host or per gram of host. Yield was affected by host density in one of the four nematode-host combinations (S. carpocapsae and T. molitor). We conclude that optimization of inoculation parameters is a necessary component of developing an in vivo production system for entomopathogenic nematodes.  相似文献   

19.
Projects to manage arthropod pests using entomopathogenic nematodes (EPNs) in Brazil, Korea and USA are reviewed to identify conditions and practices that affected the use of EPNs for pest management. A proliferation of covered agriculture in Korea, the growth in demand for high value, pesticide-free produce in Korea and Brazil, and the cost-effectiveness of EPNs created favorable conditions for the widespread adoption of EPN products in Brazilian guava orchards and Korean vegetable greenhouses. In Florida, EPNs imported from South America function successfully as classical biocontrol agents against invasive mole crickets attacking pasture and turf. However, the low value of pasture and the availability of cost-effective chemical insecticides in turf have depressed the demand for EPN products to control mole crickets. In Florida citrus orchards, a recent, dramatic increase in the use of chemical insecticides to control an arthropod vector of a devastating bacterial disease of citrus (huanglongbing) reduced the demand for EPN products to control Diaprepes root weevils. Nevertheless, a rich and diverse EPN fauna in the Florida peninsula provides significant control of subterranean stages of root weevils in some habitats, and is the focus of research to develop cultural practices that exploit the potential for increased pest management through EPN conservation.  相似文献   

20.
The plum curculio, Conotrachelus nenuphar, is a major pest of pome and stone fruit. Our objective was to determine virulence and reproductive potential of six commercially available nematode species in C. nenuphar larvae and adults. Nematodes tested were Heterorhabditis bacteriophora (Hb strain), H. marelatus (Point Reyes strains), H. megidis (UK211 strain), Steinernema riobrave (355 strain), S. carpocapsae (All strain), and S. feltiae (SN strain). Survival of C. nenuphar larvae treated with S. feltiae and S. riobrave, and survival of adults treated with S. carpocapsae and S. riobrave, was reduced relative to non-treated insects. Other nematode treatments were not different from the control. Conotrachelus nenuphar larvae were more susceptible to S. feltiae infection than were adults, but for other nematode species there was no significant insect-stage effect. Reproduction in C. nenuphar was greatest for H. marelatus, which produced approximately 10,000 nematodes in larvae and 5,500 in adults. Other nematodes produced approximately 1,000 to 3,700 infective juveniles per C. nenuphar with no significant differences among nematode species or insect stages. We conclude that S. carpocapsae or S. riobrave appears to have the most potential for controlling adults, whereas S. feltiae or S. riobrave appears to have the most potential for larval control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号