首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When placed at the tip of a glass micropipette electrode the polymeric matrix of the secretory granule behaves like a diode. The measured current was 100-fold greater at negative potentials compared to positive potentials, and up to sixfold greater than that measured with the pipette alone. By manipulating the geometry of the electric field we show that these electrical properties result from focusing an electric field at the gel-electrolyte interface. We also show, by using pulsed-laser imaging with fluorescein as the ionic probe, that there is a rapid accumulation and depletion of ions at the gel-electrolyte interface. A voltage pulse of -9 V applied to the gel caused a severalfold increase in the fluorescence intensity within 5 ms. This correlated with an increase in the measured current (approximately 1 microA). In contrast, within 5 ms of applying +9 V we recorded a decrease in the fluorescence intensity, which paralleled the twofold decrease in the measured current. This is similar to a p-n junction where an applied voltage causes the accumulation and depletion of charge carriers. Using synthetic gels (diameter 3-6 microns) with different charge characteristics we observed no rectification of the current with neutral gels and confirmed that rectification and amplification of the current were dependent on the fixed charge within a gel. In addition, we modeled the conduction at the gel-electrolyte interface using the Nernst-Planck electrodiffusion equation and accurately fitted the experimental current-voltage relationships. This study provides some insight into how biological interfaces may function. For example, we suggest that neurotransmitter release during exocytosis could be regulated by voltage-induced accumulation and depletion of ions at the interface between the secretory granule and the fusion pore.  相似文献   

2.
The iontophoretic release of drugs from micropipettes into free (Ringer's) solution was described using an ion-selective microelectrode assay method. This characterization, with a temporal resolution of 20 ms, showed that the equilibrium rate of drug transport was not linearly proportional to release current; the departure from linearity was increased by backing current and the result was demonstrated with analytically derived drug release functions. The general relation between the drug transport rate and release current was independent of the specific drug or pipette resistance; no functional relation was observed that might quantitatively predict this dependence without prior use of the assay. The diffusion coefficients at 25 degrees C in frog Ringer's of the drugs used in this study, all neuromuscular agonists, were determined: all values X 10(6) cm2/s; acetylcholine 6.11 +/- 0.30; carbamylcholine 7.44 +/- 0.34; 3-(m-hydroxyphenyl) prophyltrimethyl ammonium 5.79 +/- 0.13.  相似文献   

3.
Micropipette-aspirated erythrocytes exhibit reversible changes in sphericity (surface-to-volume ratio) in response to applied electric fields. The potentials were applied between the shaft of the pipette and the bathing medium using Ag-AgCl electrodes and current clamping electronics. The change in surface-to-volume ratio is evidenced as a reversible change in the length of the cell projection in the pipette at constant aspiration pressure and changing voltage. The magnitude of the changes decreased in proportion to the inverse of the solute concentration indicating that the change in sphericity was due to a change in cell volume. Reversible changes in projection length equivalent to a 10% change in cell volume were observed to occur over times on the order of 10 s. The magnitude and time course of the effect were not affected by the removal of intracellular hemoglobin or inhibition of anion exchange. The effect was reduced by the presence of lanthanum and other multivalent cations in the suspending solution, suggesting that surface charge may play a role in mediating the effect.  相似文献   

4.
In both skeletal and cardiac muscle, the dihydropyridine (DHP) receptor is a critical element in excitation-contraction (e-c) coupling. However, the mechanism for calcium release is completely different in these muscles. In cardiac muscle the DHP receptor functions as a rapidly-activated calcium channel and the influx of calcium through this channel induces calcium release from the sarcoplasmic reticulum (SR). In contrast, in skeletal muscle the DHP receptor functions as a voltage sensor and as a slowly-activating calcium channel; in this case, the voltage sensor controls SR calcium release. It has been previously demonstrated that injection of dysgenic myotubes with cDNA (pCAC6) encoding the skeletal muscle DHP receptor restores the slow calcium current and skeletal type e-c coupling that does not require entry of external calcium (Tanabe, Beam, Powell, and Numa. 1988. Nature. 336:134-139). Furthermore, injection of cDNA (pCARD1) encoding the cardiac DHP receptor produces rapidly activating calcium current and cardiac type e-c coupling that does require calcium entry (Tanabe, Mikami, Numa, and Beam. 1990. Nature. 344:451-453). In this paper, we have studied the voltage dependence of, and the relationship between, charge movement, calcium transients, and calcium current in normal skeletal muscle cells in culture. In addition, we injected pCAC6 or pCARD1 into the nuclei of dysgenic myotubes and studied the relationship between the restored events and compared them with those of the normal cells. Charge movement and calcium currents were recorded with the whole cell patch-clamp technique. Calcium transients were measured with Fluo-3 introduced through the patch pipette. The kinetics and voltage dependence of the charge movement, calcium transients, and calcium current in dysgenic myotubes expressing pCAC6 were qualitatively similar to the ones elicited in normal myotubes: the calcium transient displayed a sigmoidal dependence on voltage and was still present after the addition of 0.5 mM Cd2+ + 0.1 mM La3+. In contrast, the calcium transient in dysgenic myotubes expressing pCARD1 followed the amplitude of the calcium current and thus showed a bell shaped dependence on voltage. In addition, the transient had a slower rate of rise than in pCAC6-injected myotubes and was abolished completely by the addition of Cd2+ + La3+.  相似文献   

5.
Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (-50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release.  相似文献   

6.
7.
The conventional patch-clamp technique requires well-trained experimenter. Few commercial automated patch-clamp systems, designed for drug development, are better suited for large-scale research then for standard electrophysiological experiments. Here we describe a state machine for automated recognition of recording states of the patch-clamp experiment. The principle of the state machine is based on evaluation of the charge carried by membrane current during specific time segments in responses to square wave voltage stimulation. The state machine may serve for generating various sound alerts, signals for automated control of other devices, assistance in micromanipulation, internal pipette pressure control, and holding potential adjustments. Algorithm of the state machine, designed to cover wide variety of cell types, was successfully tested on rat ventricular myocytes.  相似文献   

8.
Red blood cell membrane exhibits a large resistance to changes in surface area. This resistance is characterized by the area expansivity modulus K, which relates the isotropic membrane force resultant, T, to the fractional change in membrane surface area delta A/Ao. The experimental technique commonly used to determine K is micropipette aspiration. Using this method, E. A. Evans and R. Waugh (1977, Biophys. J. 20:307-313) obtained a value of 450 dyn/cm for the modulus. In the present report, it is shown that the value of K, as determined using this method, is affected by electric potential differences applied across the tip of the pipette. Using Ag-AgCl electrodes and current clamping electronics, we obtained values for K ranging from 150 dyn/cm with -1.0 V applied, to 1,500 dyn/cm with 1.0 V applied. At 0.0 V the modulus obtained was approximately 500 dyn/cm. A reversible, voltage- and pressure-dependent change in the cell volume probably accounts for the effect of the voltage on the calculated value of the modulus. The use of lanthanum chloride or increasing the extra- and intracellular solute concentrations reduced the voltage dependence of the measurements. It was also found that when dissimilar metals were used to "ground" the pipette to the chamber to prevent lysis of cells by static charge, values for K ranged from 121 to 608 dyn/cm. Based on measurements made at zero applied volts, in the presence of 0.4 mM lanthanum and at high solute concentration, we conclude that the true value of the modulus is approximately 500 dyn/cm.  相似文献   

9.
S Nawy  C E Jahr 《Neuron》1991,7(4):677-683
Transmitter release from photoreceptors is decreased by light, resulting in a conductance increase in depolarizing bipolar cells. Addition of exogenous cGMP through a patch pipette to depolarizing bipolar cells from slices of dark-adapted tiger salamander retina resulted in an enhancement of the light response. This enhancement was blocked by GTP-gamma-S and dipyridamole, an inhibitor of phosphodiesterase. GTP-gamma-S and dipyridamole also blocked responses to exogenously applied 2-amino-4-phosphonobutyrate (APB), the glutamate agonist selective for this receptor. These data support the hypothesis that the postsynaptic receptor is linked via a G protein to a phosphodiesterase. The binding of glutamate or APB to the receptor suppresses a cGMP-activated current by increasing the rate of cyclic nucleotide hydrolysis.  相似文献   

10.
The mechanism by which the phenylalkylamines, verapamil and D600, and related compounds, block inactivating delayed rectifier K+ currents in rat alveolar epithelial cells, was investigated using whole-cell tight- seal recording. Block by phenylalkylamines added to the bath resembles state-dependent block of squid K+ channels by internally applied quarternary ammonium ions (Armstrong, C.M. 1971. Journal of General Physiology. 58:413-437): open channels are blocked preferentially, increased [K+]o accelerates recovery from block, and recovery occurs mainly through the open state. Slow recovery from block is attributed to the existence of a blocked-inactivated state, because recovery was faster in three situations where recovery from inactivation is faster: (a) at high [K+]o, (b) at more negative potentials, and (c) in cells with type l K+ channels, which recover rapidly from inactivation. The block rate was used as a bioassay to reveal the effective concentration of drug at the block site. When external pH, pHo, was varied, block was much faster at pHo 10 than pHo 7.4, and very slow at pHo 4.5. The block rate was directly proportional to the concentration of neutral drug in the bath, suggesting that externally applied drug must enter the membrane in neutral form to reach the block site. High internal pH (pHi 10) reduced the apparent potency of externally applied phenylalkylamines, suggesting that the cationic form of these drugs blocks K+ channels at an internal site. The permanently charged analogue D890 blocked more potently when added to the pipette than to the bath. However, lowering pHi to 5.5 did not enhance block by external drug, and tertiary phenylalkylamines added to the pipette solution blocked weakly. This result can be explained if drug diffuses out of the cell faster than it is delivered from the pipette, the block site is reached preferentially via hydrophobic pathways, or both. Together, the data indicate the neutral membrane-bound drug blocks K+ channels more potently than intracellular cationic drug. Neutral drug has rapid access to the receptor, where block is stabilized by protonation of the drug from the internal solution. In summary, externally applied phenylalkylamines block open or inactivated K+ channels by partitioning into the cell membrane in neutral form and are stabilized at the block site by protonation.  相似文献   

11.
Gating currents were recorded at 11 degrees C in cell-attached and inside-out patches from the innervated membrane of Electrophorus main organ electrocytes. With pipette tip diameters of 3-8 microns, maximal charge measured in patches ranged from 0.74 to 7.19 fC. The general features of the gating currents are similar to those from the squid giant axon. The steady-state voltage dependence of the ON gating charge was characterized by an effective valence of 1.3 +/- 0.4 and a midpoint voltage of -56 +/- 7 mV. The charge vs. voltage relation lies approximately 30 mV negative to the channel open probability curve. The ratio of the time constants of the OFF gating current and the Na current was 2.3 at -120 mV and equal at -80 mV. Charge immobilization and Na current inactivation develop with comparable time courses and have very similar voltage dependences. Between 60 and 80% of the charge is temporarily immobilized by inactivation.  相似文献   

12.
Intramembrane charge movement and Ca2+ release from sarcoplasmic reticulum was studied in foetal skeletal muscle cells from normal and mutant mice with 'muscular dysgenesis' (mdg/mdg). It was shown that: 1) unlike normal myotubes, in dysgenic myotubes membrane depolarization did not evoke calcium release from the sarcoplasmic reticulum; 2) when all ionic currents are pharmacologically suppressed, membrane depolarization produced an asymmetric intramembrane charge movement in both normal and dysgenic myotubes. The relationship between the membrane potential and the amount of charge movement in these muscles could be expressed by a two-state Boltzmann equation; 3) the maximum amount of charge movement associated with depolarization (Qon max) in normal and in dysgenic myotubes was 6.3 +/- 1.4 nC/microF (n = 6) and 1.7 +/- 0.3 nC/microF (n = 6) respectively; 4) nifedipine (1-20 microM) applied to the bath reduced Qon max by about 40% in normal muscle cells. In contrast, the drug had no significant effect on the charge movement of dysgenic myotubes; and 5) the amount of nifedipine-resistant charge movement in normal and in dysgenic myotubes was 3.5 nC/microF (n = 3) and 1.7 nC/microF 1 maximum (n = 3), respectively.  相似文献   

13.
Chemotactic signaling in filamentous cells of Escherichia coli.   总被引:8,自引:10,他引:8       下载免费PDF全文
Video techniques were used to record chemotactic responses of filamentous cells of Escherichia coli stimulated iontophoretically with aspartate. Long, nonseptate cells were produced from polyhook strains either by introducing a cell division mutation or by growth in the presence of cephalexin. Markers indicating rotation of flagellar motors were attached with anti-hook antibodies. Aspartate was applied by iontophoretic ejection from a micropipette, and the effects on the direction of rotation of the markers were measured. Motors near the pipette responded, whereas those sufficiently far away did not, even when the pipette was near the cell surface. The response of a given motor decreased as the pipette was moved away, but it did so less steeply when the pipette remained near the cell surface than when it was moved out into the external medium. This shows that there is an internal signal, but its range is short, only a few micrometers. These experiments rule out signaling by changes in membrane potential, by simple release or binding of a small molecule, or by diffusion of the receptor-attractant complex. A likely candidate for the signal is a protein or ligand that is activated by the receptor and inactivated as it diffuses through the cytoplasm. The range of the signal was found to be substantially longer in a cheZ mutant, suggesting that the product of the cheZ gene contributes to this inactivation.  相似文献   

14.
When performing whole-cell configuration recordings, it is important to minimize series resistance to reduce the time constant of charging the cell membrane capacitance and to reduce error in membrane potential control. To this end, an existing method was improved by widening the patch pipette shank through the calibrated combination of heat and air pressure. The heat was produced by passing current through a filament that was shaped appropriately to ensure a homogeneous heating of the pipette shank. Pressurized air was applied to the lumen of a pipette, pulled from a borosilicate glass microcap, via the pressure port of a modified commercial holder. The pipette reshaping was viewed on an LCD monitor connected to a contrast-intensified CCD camera and coupled to a modified bright-field stereomicroscope. By appropriately regulating the timing of air pressure and the application of heating, the pipette shank and, independently, the tip opening diameter were widened as desired. The methods illustrated here to fabricate and use the patch pipettes, using just one glass type, allowed the sealing of a wide variety of cell types isolated from different amphibian, reptilian, fish, and mammalian tissues as well as a variety of artificial membranes made with many different lipid mixtures. The access resistance yielded by pressure-polished pipettes was approximately one-fourth the size of the one attained with conventional pipettes; besides improving the electrical recordings, this minimized intracellular ion accumulation or depletion as well. Enlarged shank geometry allowed for fast intracellular perfusion as shown by fluorescence imaging, also via pulled quartz or plastic tubes, which could be inserted very close to the pipette tip.  相似文献   

15.
Release of charged neurotransmitter molecules through a narrow fusion pore requires charge compensation by other ions. It has been proposed that this may occur by ion flow from the cytosol through channels in the vesicle membrane, which would generate a net outward current. This hypothesis was tested in chromaffin cells using cell-attached patch amperometry that simultaneously measured catecholamine release from single vesicles and ionic current across the patch membrane. No detectable current was associated with catecholamine release indicating that <2% of cations, if any, enter the vesicle through its membrane. Instead, we show that flux of catecholamines through the fusion pore, measured as an amperometric foot signal, decreases when the extracellular cation concentration is reduced. The results reveal that the rate of transmitter release through the fusion pore is coupled to net Na+ influx through the fusion pore, as predicted by electrodiffusion theory applied to fusion-pore permeation, and suggest a prefusion rather than postfusion role for vesicular cation channels.  相似文献   

16.
Ion transport in a confined conical nanochannel with high solution concentrations was studied using molecular dynamics simulation. The simulation results indicated that the ion current rectification appeared at high solution concentrations, even without electrical double layer (EDL) overlapping, which was still influenced by both the solution concentration and surface charge properties as it would be in a low solution concentration. With solution concentrations increasing from 0.41 to 2.08 M, a maximum rectification ratio was obtained. This phenomenon was attributed to the competition between the axial binding energy gradient arising from the confined conical geometry intensifying the ion axial asymmetric concentration polarisation and the decreasing thickness of the EDL weakening the concentration polarisation.  相似文献   

17.
The biophysical properties and cellular distribution of ion channels largely determine the input/output relationships of electrically excitable cells. A variety of patch pipette voltage clamp techniques are available to characterize ionic currents. However, when used by themselves, such techniques are not well suited to the task of mapping low-density channel distributions. We describe here a new voltage clamp method (the whole cell loose patch (WCLP) method) that combines whole-cell recording through a tight-seal pipette with focal extracellular stimulation through a loose-seal pipette. By moving the stimulation pipette across the cell surface and using a stationary whole-cell pipette to record the evoked patch currents, this method should be suitable for mapping channel distributions, even on large cells possessing low channel densities. When we applied this method to the study of currents in cultured chick myotubes, we found that the cell cable properties and the series resistance of the recording pipette caused significant filtering of the membrane currents, and that the filter characteristics depended in part upon the distance between the stimulating and recording pipettes. We describe here how we determined the filter impulse response for each loose-seal pipette placement and subsequently recovered accurate estimates of patch membrane current through deconvolution.  相似文献   

18.
Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In attempts to suppress Ca release by direct effects on the SR, three interventions were applied: (a) a conditioning pulse that causes calcium release and inhibits release in subsequent pulses by Ca-dependent inactivation; (b) a series of brief, large pulses, separated by long intervals (greater than 700 ms), which deplete Ca2+ in the SR; and (c) intracellular application of the release channel blocker ruthenium red. All these reduced calcium release flux. None was expected to affect directly the voltage sensor of the T-tubule; however, all of them reduced or eliminated a component of charge movement current with the following characteristics: (a) delayed onset, peaking 10-20 ms into the pulse; (b) current reversal during the pulse, with an inward phase after the outward peak; and (c) OFF transient of smaller magnitude than the ON, of variable polarity, and sometimes biphasic. When the total charge movement current had a visible hump, the positive phase of the current eliminated by the interventions agreed with the hump in timing and size. The component of charge movement current blocked by the interventions was greater and had a greater inward phase in slack fibers with high [EGTA] inside than in stretched fibers with no EGTA. Its amplitude at -40 mV was on average 0.26 A/F (SEM 0.03) in slack fibers. The waveform of release flux determined from the Ca transients measured simultaneously with the membrane currents had, as described previously (Melzer, W., E. Ríos, and M. F. Schneider. 1984. Biophysical Journal. 45:637-641), an early peak followed by a descent to a steady level during the pulse. The time at which this peak occurred was highly correlated with the time to peak of the current suppressed, occurring on average 6.9 ms later (SEM 0.73 ms). The current suppressed by the above interventions in all cases had a time course similar to the time derivative of the release flux; specifically, the peak of the time derivative of release flux preceded the peak of the current suppressed by 0.7 ms (SEM 0.6 ms). The magnitude of the current blocked was highly correlated with the inhibitory effect of the interventions on Ca2+ release flux.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The unique electromotility of the outer hair cell (OHC) is believed to promote sharpening of the passive mechanical vibration of the mammalian basilar membrane. The cell also presents a voltage-dependent capacitance, or equivalently, a nonlinear gating current, which correlates well with its mechanical activity, suggesting that membrane-bound voltage sensor-motor elements control OHC length. We report that the voltage dependence of the gating charge and motility are directly related to membrane stress induced by intracellular pressure. A tracking procedure was devised to continuously monitor the voltage at peak capacitance (VpkCm) after obtaining whole cell voltage clamp configuration. In addition, nonlinear capacitance was more fully evaluated with a stair step voltage protocol. Upon whole cell configuration, VpkCm was typically near -20 mV. Negative patch pipette pressure caused a negative shift in VpkCm, which obtained a limiting value near the normal resting potential of the OHC (approximately -70 mV) at the point of cell collapse. Positive pressure in the pipette caused a positive shift that could reach values greater than 0 mV. Measures of the mechanical activity of the OHC mirrored those of charge movement. Similar membrane-tension dependent peak shifts were observed after the cortical cytoskeletal network was disrupted by intracellular dialysis of trypsin from the patch pipette. We conclude that unlike stretch receptors, which may sense tension through elastic cytoskeletal elements, the OHC motor senses tension directly. Furthermore, since the voltage dependence of the OHC nonlinear capacitance and motility is directly regulated by intracellular turgor pressure, we speculate that modification of intracellular pressure in vivo provides a mechanism for controlling the gain of the mammalian "cochlear amplifier".  相似文献   

20.
Papke RL 《Life sciences》2006,78(24):2812-2819
The assessment of functional properties is a crucial step in the screening of potential new drug candidates. The development of moderate to high throughput electrophysiological recording systems such as OpusXpress (Molecular Devices) has facilitated the process of testing new drugs to a large degree. However, while the simple screening of multiple drugs at a single concentration identifies "hits" and "misses", the generation of full concentration-response studies is still a bottleneck in drug development. The alpha7 nicotinic acetylcholine receptor displays a unique concentration dependence of response kinetics which permits estimates of EC50 and Imax values for experimental drugs to be generated from single-concentration responses. This method is based on the analysis of 13 different concentration-response studies utilizing either human or rat alpha7 nAChR. Each experimental response was first normalized to an ACh control, and then a transformation of the pooled data was generated which, based on the relationship between the net charge and peak current to their respective EC50 values defined the "functional concentration" (the test concentration relative to the EC50 for the given agonist). At low functional concentrations, net charge is large relative to peak current amplitude and at higher functional concentration this relationship reverses. For any single-concentration response, the ratio of net charge to peak current can be used to estimate functional concentration. Efficacy can then be estimated by comparing the observed (net charge) response to the expected value for a full agonist at the estimated functional concentration. This extended analysis, combined with automated recording methods, should greatly increase the efficiency with which promising new drug candidates can be characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号