首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new compounds, hypoxyloamide ( 1 ), 8‐methoxynaphthalene‐1,7‐diol ( 2 ), and hypoxylonol ( 3 ), together with seven compounds isolated from nature for the first time, investiamide ( 4 ), hypoxypropanamide ( 5 ), hypoxylonol A ( 6 ), investienol ( 7 ), 2‐heptylfuran ( 8 ), (3S)‐5‐methyl‐8‐O‐methylmellein ( 9 ), (4R)‐O‐methylsclerone ( 10 ), along with 19 known compounds, 11 – 29 , were isolated from the culture broth of Hypoxylon investiens BCRC 10F0115, a fungal endophyte residing in the stems of an endemic Formosan plant Litsea akoensis var. chitouchiaoensis. The structures of the new compounds were established by spectroscopic methods, including UV, IR, HR‐ESI‐MS, and extensive 1D‐ and 2D‐NMR techniques. Of these isolates, 2 , 8‐methoxynaphthalen‐1‐ol ( 15 ), and 1,8‐dimethoxynaphthalene ( 16 ) showed nitric oxide (NO) inhibitory activity with IC50 values of 11.8±0.9, 17.8±1.1, and 13.3±0.5 μM , respectively, stronger than the positive control quercetin (IC50 36.8±1.3 μM ). Compounds 2, 15 , and 16 also showed interleukin‐6 (IL‐6) inhibitory activity with IC50 values of 9.2±1.7, 18.0±0.6, and 2.0±0.1 μM , stronger than the positive control quercetin (IC50 31.3±1.6 μM ). To the best of our knowledge, this is the first report on guaiane sesquiterpene metabolites, 3, 6 , and 7 , from the genus Hypoxylon.  相似文献   

2.
Swainsonine, an extract from Astragalus membranaceus, is known for its anti-cancer effects and could prevent metastases. In order to investigate the effects and mechanisms of swainsonine in C6 glioma cells, we carry out correlated experiments in vitro and in vivo. After treatment with swainsonine, the effective dose and IC50 value of swainsonine in the C6 glioma cell were examined using the MTT assay. Cell cycle distribution and apoptotic rates were analyzed using FCM and [Ca2+]i was measured by LSCM. Expressions of p16 and p53 protein were evaluated by immunocytochemical methods. Simultaneously, glioma-bearing rats were administered swainsonine at doses of 2, 4 and 8 mg/kg body wt. The inhibition rate was calculated and pathological sections were observed. The results indicated that the growth of C6 glioma cells is inhibited by swainsonine in vitro, with an IC50 value within 24 h of 0.05 μg/ml. Increases in swainsonine correlate with S phase percentages of 11.3%, 11.6% and 12.4%, respectively. Moreover, the expression of apoptosis inhibiting p53 and p16 protein decreases gradually. Tumor weight in vivo decreased clearly and HE dyeing of tumor tissue showed gray, its texture was soft, with necrosis and hemorrhagic concentrated inward. Swainsonine could inhibit the proliferation of C6 glioma cells in vitro and the growth of C6 glioma in vivo. The mechanisms of swainsonine-induced apoptosis may relate with the expression of apoptosis-related genes and overloading-[Ca2+]i-induced endoplasmic reticulum stress.  相似文献   

3.
Drug resistance tuberculosis is one of the challenging tasks that dictates the desperate need for the development of new antitubercular agents which operate via novel modes of action. Here, we are reporting on 4‐aminoquinazolines as M. tuberculosis N‐acetylglucosamine‐1‐phosphate uridyltransferase (GlmUMTB) inhibitors to overcome the problem of the MDR‐TB. Amongst the synthesized compounds, two of them were observed to be the effective compounds of the series (IC50=6.4 μM (H37Rv), MIC=25 μM (MDR‐TB) and IC50=2.9 μM (H37Rv), MIC=6.25 μM (MDR‐TB), respectively).  相似文献   

4.
Twenty-five thiadiazole derivatives 125 were synthesized from methyl 4-methoxybenzoate via hydrazide and thio-hydrazide intermediates, and evaluated for their potential against β-glucuronidase enzyme. Most of the compounds including 1 (IC50 = 26.05 ± 0.60 μM), 2 (IC50 = 42.53 ± 0.80 μM), 4 (IC50 = 38.74 ± 0.70 μM), 5 (IC50 = 9.30 ± 0.29 μM), 6 (IC50 = 6.74 ± 0.26 μM), 7 (IC50 = 18.40 ± 0.66 μM), and 15 (IC50 = 18.10 ± 0.53 μM) exhibited superior activity potential than the standard d-saccharic acid-1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking studies were conducted to correlate the in vitro results and to identify possible mode of interaction with enzyme active site.  相似文献   

5.
A mild and efficient route to tetraketones (2–22) has been developed by way of tetraethyl ammonium bromide (Et4N+Br? ) mediated condensation of dimedone (5,5-dimethylcyclohexane-1,3-dione, 1) with a variety of aldehydes. All these compounds showed significant lipoxygenase inhibitory activity and moderate to strong antioxidant potential. Compounds 19 (IC50 = 7.8 μM), 22 (IC50 = 12.5 μM), 3 (IC50 = 16.3 μM), 11 (IC50 = 17.5 μM) and 8 (IC50 = 21.3 μM) showed significant inhibitory potential against lipoxygenase (baicalein, IC50 = 22.4 μM). On the other hand compound 19 (IC50 = 33.6 μM) also showed strong antioxidant activity compared to the standard (IC50 = 44.7 μM). This study is likely to lead to the discovery of therapeutically efficient agents against very important disorders including inflammation, asthma, cancer and autoimmune diseases.  相似文献   

6.
Cd2+, Mn2+, and Al3+ inhibited synaptosomal amine uptake in a concentration-dependent and time-dependent manner. In the absence of Ca2+, the rank order of inhibition of noradrenaline uptake was: Cd2+ (IC50 = 250 μM) > Al3+ (IC50 = 430 μM) > Mn2+ (IC50 = 1.50 mM), the IC50 being the concentration of metal ions that gave rise to 50% inhibition of uptake. In the presence of 1 mM Ca2+, the rank order of inhibition of uptake was: Al3+ (IC50 = 330 μM) > Cd2+ (IC50 = 540 μM) > (IC50 = 1.5 mM). The rank order of inhibition of serotonin uptake without Ca2+ was: Al3+ (IC50 = 370 μM) > Cd2+ (IC50 = 610 μM) > Mn2+ (IC50 = 3.4 mM) and the rank order in the presence of 1 mM Ca2+ was: Al3+ (IC50 = 290 μM) > Cd2+ (IC50 = 1.5 mM) > Mn2+ (IC50 = 4.0 mM). Ca2+, at 1 mM, definitely antagonized the inhibitory actions of Cd2+ on noradrenaline and serotonin uptake. Al3+ stimulated noradrenaline uptake at concentrations around 20–250 μM but inhibited this uptake at concentrations exceeding 300 μM in a dose-related fashion. Ca2+, at 1 mM, enhanced both the stimulatory and inhibitory effects of Al3+. Ca2+ also enhanced the inhibitory actions of Al3+ on seotonin uptake. These results, in conjunction with those we have previously published, suggest that Cd2+, Mn2+, and Al3+ exert differential and selective effects on the structure and function of synaptosomal membranes.  相似文献   

7.
A series of 1-[(4′-chlorophenyl)carbonyl-4-(aryl)thiosemicarbazide derivatives 125 was synthesized and characterized by spectroscopic techniques such as EI-MS and 1H NMR. All compounds were screened for urease inhibitory activity in vitro and demonstrated excellent inhibitory activity in the range of IC50 = 0.32 ± 0.01–25.13 ± 0.13 μM as compared to the standard thiourea (IC50 = 21.25 ± 0.13 μM). Amongst the potent analogs, compounds 3 (IC50 = 2.31 ± 0.01 μM), 6 (IC50 = 2.14 ± 0.04 μM), 10 (IC50 = 1.14 ± 0.06 μM), 20 (IC50 = 2.15 ± 0.05 μM), and 25 (IC50 = 0.32 ± 0.01 μM) are many folds more active than the standard. Structure-activity relationship (SAR) was rationalized by looking at the effect of diversely substituted aryl ring on inhibitory potential which predicted that regardless of the nature of substituents, their positions on aryl ring is worth important for the potent activity. Furthermore, to verify these interpretations, in silico study was performed on all compounds and a good correlation was perceived between the biological evaluation and docking study of compounds.  相似文献   

8.
We have previously shown that whereas (RS)-2-amino-3-(3-hydroxy-5-phenylisoxazol-4-yl)propionic acid (APPA) shows the characteristics of a partial agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, (S)-APPA is a full AMPA receptor agonist and (R)-APPA a weak competitive AMPA receptor antagonist. This observation led us to introduce the new pharmacological concept, functional partial agonism. Recently we have shown that the 2-pyridyl analogue of APPA, (RS)-2-amino-3-[3-hydroxy-5-(2-pyridyl)isoxazol-4-yl]propionic acid (2-Py-AMPA), is a potent and apparently full AMPA receptor agonist, and this compound has now been resolved into (+)- and (-)-2-Py-AMPA (ee ≥ 99.0%) by chiral HPLC using a Chirobiotic T column. The absolute stereochemistry of the enantiomers of APPA has previously been established by X-ray analysis, and on the basis of comparative studies of the circular dichroism spectra of the enantiomers of APPA and 2-Py-AMPA, (+)- and (-)-2-Py-AMPA were assigned the (S)- and (R)-configuration, respectively. In a series of receptor binding studies, neither enantiomer of 2-Py-AMPA showed detectable affinity for kainic acid receptor sites or different sites at the N-methyl-D-aspartic acid (NMDA) receptor complex. (+)-(S)-2-Py-AMPA was an effective inhibitor of [3H]AMPA binding (IC50 = 0.19 ± 0.06 μM) and a potent AMPA receptor agonist in the rat cortical wedge preparation (EC50 = 4.5 ± 0.3 μM) comparable with AMPA (IC50 = 0.040 ± 0.01 μM; EC50 = 3.5 ± 0.2 μM), but much more potent than (+)-(S)-APPA (IC50 = 5.5 ± 2.2 μM; EC50 = 230 ± 12 μM). Like (-)-(R)-APPA (IC50 > 100 μM), (-)-(R)-2-Py-AMPA (IC50 > 100 μM) did not significantly affect [3H]AMPA binding, and both compounds were week AMPA receptor antagonists (Ki = 270 ± 50 and 290 ± 20 μM, respectively). Chirality 9:274–280, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Leishmaniasis is an infection caused by a protozoan parasite of the genus Leishmania and is the second most prevalent parasitic protozoal disease after malaria in the world. We report the in vitro leishmanicidal activity on promastigote forms of Leishmania amazonensis and cytotoxicity, using LLCMK2 cells, of the glycoalkaloids from the fruits of Solanum lycocarpum, determined by colorimetric methods. The alkaloidic extract was obtained by acid‐base extraction; solamargine and solasonine were isolated by silica‐gel chromatography, followed by reversed‐phase HPLC final purification. The alkaloidic extract, solamargine, solasonine, as well as the equimolar mixture of the glycoalkaloids solamargine and solasonine displayed leishmanicidal activity against promastigote forms of L. amazonensis, whereas the aglycone solasodine was inactive. After 24 and 72 h of incubation, most of the samples showed lower cytotoxicities (IC50 6.5 to 124 μM ) as compared to leishmanicidal activity (IC50 1.1 to 23.6 μM ). The equimolar mixture solamargine/solasonine was the most active with an IC50 value of 1.1 μM , after 72 h. Likewise, solamargine was the most active after 24 h with an IC50 value of 14.4 μM , both in comparison with the positive control amphotericin B.  相似文献   

10.
The first natural S‐containing benzophenone dimer, named guignasulfide ( 3 ), was isolated from the culture of Guignardia sp. IFB‐E028, an endophytic fungus residing in healthy leaves of Hopea hainanensis. Its structure was determined through correlative analyses of its MS, 1D‐ and 2D‐NMR spectroscopic data. Two other known benzophenone derivatives, monomethylsulochrin and rhizoctonic acid ( 1 and 2 , resp.) were also isolated. Guignasulfide ( 3 ) was more active against the human liver cancer cell line HepG2 (IC50 value: 5.2±0.4 μM ) than metabolites 1 and 2 (IC50 values: 63.5±0.6 and 60.2±0.5 μM ); compounds 1 – 3 showed also moderately inhibitory effects on the human bacterial pathogen Helicobacter pylori with MIC values of 28.9±0.1, 60.2±0.4, and 42.9±0.5 μM , respectively.  相似文献   

11.
Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC50 ? 15 μM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC50 = 479 μM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo? compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37‐fold improvement in potency over dynasore for liposome‐stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36‐fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin‐dependent endocytosis of transferrin in multiple cell types (IC50 of 5.7 and 5.8 μM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin‐independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity‐dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non‐specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin‐mediated endocytosis .  相似文献   

12.
In this study, a series of fluorine‐containing chiral hydrazide‐hydrazone derivatives [III‐XII] from ?‐cysteine ethyl ester hydrochloride was synthesized as new antioxidant and anticholinesterase agents. The antioxidant activity of these derivatives was evaluated by ABTS and DPPH· scavenging and CUPRAC assays and the anticholinesterase activity by the Ellman method spectrophotometrically. The results of the antioxidant assay showed that compounds V , IX , and X exhibited higher activity than BHT and α‐tocopherol used as positive standards. Among the synthesized derivatives, compound IX (IC50: 2.3 ± 1.6 μM) exhibited higher acetylcholinesterase inhibitory activity than galantamine (IC50: 4.5 ± 0.8 μM). Compounds XI (IC50: 9.6 ± 1.0 μM), IX (IC50: 12.5 ± 1.6 μM), III (IC50: 16.0 ± 1.6 μM), X (IC50: 17.2 ± 1.8 μM), VI (IC50: 20.2 ± 0.8 μM), XII (IC50: 21.5 ± 1.0 μM), and VII (IC50: 24.6 ± 0.6 μM) displayed better butyrylcholinesterase inhibitory activity than galantamine (IC50: 46.03 ± 0.14 μM). ADME‐Tox analysis was used to probe the drug‐like properties of the compounds. Molecular docking studies were also applied to understand the interactions between compounds and targets. The docking calculations were supported by the experimental data. In particular, compound IX , having better activity than galantamine against acetylcholinesterase and butyrylcholinesterase enzymes, was visualized using molecular docking.  相似文献   

13.
The most frequently used catalase (CAT) activity assay is based on the spectrophotometric measurement of hydrogen peroxide (H2O2) absorbance decrease at 240 nm. Here we report an alternative high-performance liquid chromatography (HPLC) assay for human erythrocytic CAT (heCAT) activity measurement based on glutathione (GSH) analysis as a highly stable, H2O2-insensitive o-phthalaldehyde (OPA) derivative. The method was developed and validated using an isolated heCAT in phosphate-buffered saline at pH 7.4 and was applied to measure CAT activity in lysed human erythrocytes. heCAT activity was measured at initial concentrations of 5 nM for heCAT, 5 mM for H2O2, and 10 mM for GSH, and the incubation time was 10 min. Nitrite (NO2) was found to be an uncompetitive inhibitor of heCAT activity (IC50 = 9 μM) and of CAT activity in hemolysate (IC50 ∼ 750 μM). Nitrate (NO3) at concentrations up to 100 μM did not inhibit heCAT activity. Azide (N3) was found to be a very strong inhibitor of the heCAT (IC50 = 0.2 nM) but a relatively weak CAT inhibitor (IC50 ∼ 10 μM) in human hemolysates. The novel CAT activity assay works under redox conditions that more closely resemble those prevailing in cells and allows high-throughput analysis despite the required HPLC step.  相似文献   

14.
15.
The development of complementary and/or alternative drugs for treatment of hepatitis C virus (HCV) infection is still needed. Antiviral compounds in medicinal plants are potentially good targets to study. Morinda citrifolia is a common plant distributed widely in Indo‐Pacific region; its fruits and leaves are food sources and are also used as a treatment in traditional medicine. In this study, using a HCV cell culture system, it was demonstrated that a methanol extract, its n‐hexane, and ethyl acetate fractions from M. citrifolia leaves possess anti‐HCV activities with 50%‐inhibitory concentrations (IC50) of 20.6, 6.1, and 6.6 μg/mL, respectively. Bioactivity‐guided purification and structural analysis led to isolation and identification of pheophorbide a, the major catabolite of chlorophyll a, as an anti‐HCV compound present in the extracts (IC50 = 0.3 μg/mL). It was also found that pyropheophorbide a possesses anti‐HCV activity (IC50 = 0.2 μg/mL). The 50%‐cytotoxic concentrations (CC50) of pheophorbide a and pyropheophorbide a were 10.0 and 7.2 μg/mL, respectively, their selectivity indexes being 33 and 36, respectively. On the other hand, chlorophyll a, sodium copper chlorophyllin, and pheophytin a barely, or only marginally, exhibited anti‐HCV activities. Time‐of‐addition analysis revealed that pheophorbide a and pyropheophorbide a act at both entry and the post‐entry steps. The present results suggest that pheophorbide a and its related compounds would be good candidates for seed compounds for developing antivirals against HCV.  相似文献   

16.
A new ferulic acid ester derivative, tetracosane‐1,24‐diyl di[(Z)‐ferulate] ( 1 ), and a new ellagic acid derivative, 3,4 : 3′,4′‐bis(O,O‐methylene)ellagic acid ( 2 ), have been isolated from leaves and twigs of Pachycentria formosana, together with eight known compounds. Their structures were determined by in‐depth spectroscopic and mass‐spectrometric analyses. Among the isolated compounds, oleanolic acid ( 6 ), ursolic acid acetate ( 7 ), and 3‐epibetulinic acid ( 9 ) exhibited potent inhibition (IC50 values ≤21.8 μM ) of O2⋅− generation by human neutrophils in response to N‐formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB). In addition, oleanolic acid ( 6 ), 3‐O‐[(E)‐feruloyl]ursolic acid ( 8 ), 3‐epibetulinic acid ( 9 ), and lawsonic acid ( 10 ) also inhibited fMLP/CB‐induced elastase release with IC50 values ≤18.6 μM .  相似文献   

17.
Summary Extended and enhanced production of swainsonine was achieved from fed-batch fermentations of the fungus Metarhizium anisopliae. A complex medium based on oatmeal extract was intermittently fed with D-glucose and/or lysine. Swainsonine titres were improved eleven-fold and the duration of production extended was from 240 to 550 hours compared with a batch culture under the same conditions.  相似文献   

18.
A new series of 1,3,4-oxadiazole/chalcone hybrids was designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as inhibitors of EGFR, Src, and IL-6. The synthesized compounds showed promising anticancer activity, particularly against leukemia, with 8v being the most potent. The synthesized compounds exhibited strong to moderate cytotoxic activities against K-562, KG-1a, and Jurkat leukemia cell lines in MTT assays. Compound 8v showed the strongest cytotoxic activity with IC50 of 1.95 µM, 2.36 µM and 3.45 µM against K-562, Jurkat and KG-1a leukemia cell lines, respectively. Moreover; the synthesized compounds inhibited EGFR, Src, and IL-6. Compound 8v was most effective at inhibiting EGFR (IC50 = 0.24 μM), Src (IC50 = 0.96 μM), and IL-6 (% of control = 20%). Additionally, most of the compounds decreased STAT3 activation.  相似文献   

19.
Survival of entomopathogenic fungi under solar ultraviolet (UV) radiation is paramount to the success of biological control of insect pests and disease vectors. The mutagenic compound 4-nitroquinoline 1-oxide (4-NQO) is often used to mimic the biological effects of UV radiation on organisms. Therefore, we asked whether tolerance to 4-NQO could predict tolerance to UV radiation in thirty isolates of entomopathogenic fungi and one isolate of a xerophilic fungus. A dendrogram obtained from cluster analyses based on the 50 and 90 % inhibitory concentrations (IC50 and IC90, respectively) divided the fungal isolates into six clusters numbered consecutively based on their tolerance to 4-NQO. Cluster 6 contained species with highest tolerance to 4-NQO (IC50 > 4.7 μM), including Mariannaea pruinosa, Lecanicillium aphanocladii, and Torrubiella homopterorum. Cluster 1 contained species least tolerant to 4-NQO (IC50 < 0.2 μM), such as Metarhizium acridum (ARSEF 324), Tolypocladium geodes, and Metarhizium brunneum (ARSEF 7711). With few exceptions, the majority of Metarhizium species showed moderate to low tolerances (IC50 between 0.4 and 0.9 μM) and were placed in cluster 2. Cluster 3 included species with moderate tolerance (IC50 between 1.0 and 1.2 μM). In cluster 4 were species with moderate to high tolerance (IC50 between 1.3 and 1.6 μM). Cluster 5 contained the species with high tolerance (IC50 between 1.9 and 4.0 μM). The most UV tolerant isolate of M. acridum, ARSEF 324, was the least tolerant to 4-NQO. Also, L. aphanocladii, which is very susceptible to UV radiation, showed high tolerance to 4-NQO. Our results indicate that tolerance to 4-NQO does not correlate with tolerance to UV radiation. Therefore this chemical compound is not a predictor of UV tolerance in entomopathogenic fungi.  相似文献   

20.
Manipulation of the fermentation of the marine‐derived fungus Penicillium chrysogenum by addition of CaBr2 resulted in induced production of bromodiphenyl ether analogs. Two new free‐radical‐scavenging polybrominated diphenyl ethers, 1 and 2 , and three known diphenyl ethers, 3,3′‐dihydroxy‐5,5′‐dimethyldiphenyl ether ( 3 ), and an inseparable mixture of violacerol‐I ( 4 ) and violacerol‐II ( 5 ) were isolated. The structures of the two new polybromodiphenyl ethers 1 and 2 were assigned by combined spectroscopic‐data analysis, including deuterium‐induced isotope effect. Compounds 1 – 3 , and a mixture of 4 and 5 exhibited radical‐scavenging activities against 1,1‐diphenyl‐2‐picrylhydrazyl with IC50 values of 18, 15, 42, and 6 μM , respectively. With the exception of 3 , the compounds were, therefore, more active than the positive control, ascorbic acid (IC50 20 μM ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号