首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To investigate the effect of dextran sulfate (DS), a widely used anti‐aggregation agent, on cell growth and monoclonal antibody (mAb) production including the quality attributes, DS with the three different MWs (4,000 Da, 15,000 Da, and 40,000 Da) at various concentrations (up to 1 g/L) was added to suspension cultures of two different recombinant CHO (rCHO) cell lines producing mAb, SM‐0.025 and CS13‐1.00. For both cell lines, the addition of DS, regardless of the MW and concentration of DS used, improved cell growth and viability in the decline phase of growth. However, it increased mAb production only in the CS13‐1.00 cells. Among the three different MWs, 40,000 Da DS was most effective in attenuating cell aggregation during the cultures of CS13‐1.00 cells, and showed the highest maximum mAb concentration. For SM‐0.025 cells, it significantly decreased specific mAb productivity, particularly at a high concentration of DS. Overall, DS addition did not negatively affect the quality attributes of mAbs (aggregation, charge variation, and glycosylation), though its efficacy on mAb quality depended on the MW and concentration of DS and cell lines. For both cell lines, the addition of DS did not affect N‐glycosylation of mAbs and decreased basic charge variants in mAbs. For CS13‐1.00 cells, the mAb monomer increased with the addition of 40,000 Da DS at 0.3–1.0 g/L. Taken together, to maximize the beneficial effect of DS addition on mAb production, the optimal MW and concentration of DS should be determined for each specific rCHO cell line. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1113–1122, 2016  相似文献   

2.
Downstream sample purification for quality attribute analysis is a significant bottleneck in process development for non‐antibody biologics. Multi‐step chromatography process train purifications are typically required prior to many critical analytical tests. This prerequisite leads to limited throughput, long lead times to obtain purified product, and significant resource requirements. In this work, immunoaffinity purification technology has been leveraged to achieve single‐step affinity purification of two different enzyme biotherapeutics (Fabrazyme® [agalsidase beta] and Enzyme 2) with polyclonal and monoclonal antibodies, respectively, as ligands. Target molecules were rapidly isolated from cell culture harvest in sufficient purity to enable analysis of critical quality attributes (CQAs). Most importantly, this is the first study that demonstrates the application of predictive analytics techniques to predict critical quality attributes of a commercial biologic. The data obtained using the affinity columns were used to generate appropriate models to predict quality attributes that would be obtained after traditional multi‐step purification trains. These models empower process development decision‐making with drug substance‐equivalent product quality information without generation of actual drug substance. Optimization was performed to ensure maximum target recovery and minimal target protein degradation. The methodologies developed for Fabrazyme were successfully reapplied for Enzyme 2, indicating platform opportunities. The impact of the technology is significant, including reductions in time and personnel requirements, rapid product purification, and substantially increased throughput. Applications are discussed, including upstream and downstream process development support to achieve the principles of Quality by Design (QbD) as well as integration with bioprocesses as a process analytical technology (PAT). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:708–717, 2014  相似文献   

3.
In an attempt to develop a high producing mammalian cell line expressing CNTO736, a Glucagon like peptide‐1‐antibody fusion protein (also known as a Glucagon like peptide‐1 MIMETIBODYTM), we have noted that the N‐terminal GLP‐1 portion of the MIMETIBODYTM was susceptible to proteolytic degradation during cell culture, which resulted in an inactive product. Therefore, a number of parameters that had an effect on productivity as well as product quality were examined. Results suggest that the choice of the host cell line had a significant effect on the overall product quality. Product expressed in mouse myeloma host cell lines had a lesser degree of proteolytic degradation and variability in O‐linked glycosylation as compared to that expressed in CHO host cell lines. The choice of a specific CHOK1SV derived clone also had an effect on the product quality. In general, molecules that exhibited minimal N‐terminal clipping had increased level of O‐linked glycosylation in the linker region, giving credence to the hypothesis that O‐linked glycosylation acts to protect against proteolytic degradation. Moreover, products with reduced potential for N‐terminal clipping had longer in vivo serum half‐life. These findings suggest that early monitoring of product quality should be an essential part of production cell line development and therefore, has been incorporated in our process of cell line development for this class of molecules. Biotechnol. Bioeng. 2009;103: 162–176. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
The long journey of developing a drug from initial discovery target identification to regulatory approval often leaves many patients with missed window of opportunities. Both regulatory agencies and biopharmaceutical industry continue to develop creative approaches to shorten the time of new drug development in order to deliver life‐saving medicine to patients. Generally, drug substance materials to support the toxicology and early phase clinical study can only be manufactured after creating the final Master Cell Bank (MCB) of the clonally derived cell line, which normally takes 1–2 years. With recent advances in cell line development, cell culture process and analytical technologies, generating more homogeneous bulk/mini‐pool population with higher productivity and acceptable quality attributes has become a norm, thereby making it possible to shorten the timeline to initiate First in Human (FIH) trial by using bulk/mini‐pool generated materials to support toxicology and FIH studies. In this study, two monoclonal antibodies of different subclasses (IgG1 and IgG4) were expressed from the mini‐pool cells as well as clonally derived cell lines generated from the same mini‐pool. Cell growth, productivity, and product quality were compared between the materials generated from the mini‐pool and clonally derived cell line. The results demonstrate the similarity of the antibody products generated from mini‐pool cells and clonally derived cell lines from the same mini‐pool, and strongly support the concept and feasibility of using antibody materials produced from mini‐pool cultures for toxicology and FIH studies. The strategy to potentially shorten the FIH timeline is discussed. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1456–1462, 2017  相似文献   

5.
A high‐throughput DoE approach performed in a 96‐deepwell plate system was used to explore the impact of media and feed components on main quality attributes of a monoclonal antibody. Six CHO‐S derived clonal cell lines expressing the same monoclonal antibody were tested in two different cell culture media with six components added at three different levels. The resulting 384 culture conditions including controls were simultaneously tested in fed‐batch conditions, and process performance such as viable cell density, viability, and product titer were monitored. At the end of the culture, supernatants from each condition were purified and the product was analyzed for N‐glycan profiles, charge variant distribution, aggregates, and low molecular weight forms. The screening described here provided highly valuable insights into the factors and combination of factors that can be used to modulate the quality attributes of a molecule. The approach also revealed specific intrinsic differences of the selected clonal cell lines ‐ some cell lines were very responsive in terms of changes in performance or quality attributes, whereas others were less affected by the factors tested in this study. Moreover, it indicated to what extent the attributes can be impacted within the selected experimental design space. The outcome correlated well with confirmations performed in larger cell culture volumes such as small‐scale bioreactors. Being fast and resource effective, this integrated high‐throughput approach can provide information which is particularly useful during early stage cell culture development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:571–583, 2014  相似文献   

6.
Fluorescence spectroscopy and surface-enhanced Raman spectroscopy are applied to study the interaction of the drug 9-aminoacridine (9AA) with DNA and dextran sulfate. The effect of the electrostatic interaction between the positively charged 9AA and negatively charged groups in relation to the excimer or exciplex emission is investigated. The exciplex emission of 9AA is connected to the intercalation of this drug between nucleic base residues. The importance of negative groups in this interaction is evaluated by using dextran and dextran sulfate as model polymers. The existence of negative charges seems to induce an increase of the drug concentration in the vicinity of the polymers. The role of electrostatic attraction in the 9AA dimerization is confirmed by the excimer emission of 9AA in the presence of dextran sulfate. In the case of DNA, the phosphate groups may induce the drug approach to the DNA chain, but the exciplex fluorescence emission could be due to a charge transfer between the drug and adenine-rich sequences of DNA.  相似文献   

7.
Development of stable cell lines for expression of large‐molecule therapeutics represents a significant portion of the time and effort required to advance a molecule to enabling regulatory toxicology studies and clinical evaluation. Our development strategy employs two different approaches for cell line development based on the needs of a particular project: a random integration approach for projects where high‐level expression is critical, and a site‐specific integration approach for projects in which speed and reduced employee time spend is a necessity. Here we describe both our random integration and site‐specific integration platforms and their applications in support of monoclonal antibody development and production. We also compare product quality attributes of monoclonal antibodies produced with a nonclonal cell pool or clonal cell lines derived from the two platforms. Our data suggests that material source (pools vs. clones) does not significantly alter the examined product quality attributes. Our current practice is to leverage this observation with our site‐specific integration platform, where material generated from cell pools is used for an early molecular assessment of a given candidate to make informed decisions around development strategy. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1463–1467, 2017  相似文献   

8.
The baculovirus‐insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:1–18, 2014  相似文献   

9.
In the present work, the establishment and biological characterization of a new cell line, SSP‐9, derived from the pronephros of the Atlantic salmon Salmo salar, are reported. These cells grew well in Leibovitz's (L15) medium supplemented with 10% foetal calf serum at temperatures from 15 to 25° C, and they have been sub‐cultured over 100 passages to produce a continuous cell line with an epithelial‐like morphology. The SSP‐9 cells attached and spread efficiently at different plating densities, retaining 80% of cell viability after storage in liquid nitrogen. When karyotyped, the cells had 40–52 chromosomes, with a modal number of 48. Viral susceptibility tests showed that SSP‐9 cells were susceptible to infectious pancreatic necrosis virus and infectious haematopoietic necrosis virus, producing infectious virus and regular cytopathic effects. Moreover, these cells could be stimulated by poly I:C, showing significant up‐regulation in the expression of the genes that regulate immune responses, such as ifn and mx‐1. SSP‐9 cells constitutively express genes characteristic of macrophages, such as major histocompatibility complex (mhc‐II) and interleukin 12b (il‐12b), and flow cytometry assays confirmed that SSP‐9 cells can be permanently transfected with plasmids expressing a reporter gene. Accordingly, this new cell line is apparently suitable for transgenic manipulation, and to study host cell–virus interactions and immune processes.  相似文献   

10.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

11.
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc‐fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc‐fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:406–413, 2015  相似文献   

12.
The mechanism of the antiviral activity of sulfated polysaccharides on human immunodeficiency virus type 1 (HIV-1) was investigated by determining the effect of dextran sulfate on the binding of CD4 and several anti-gp120 monoclonal antibodies to both recombinant and cell surface gp120. Dextran sulfate did not interfere with the binding of sCD4 to rgp120 on enzyme-linked immunosorbent assay (ELISA) plates or in solution and did not block sCD4 binding to HIV-1-infected cells expressing gp120 on the cell surface. Dextran sulfate had minimal effects on rgp120 binding to CD4+ cells at concentrations which effectively prevent HIV replication. In contrast, it potently inhibited the binding of both rgp120 and cell surface gp120 to several monoclonal antibodies directed against the principal neutralizing domain of gp120 (V3). In an ELISA format, dextran sulfate enhanced the binding of monoclonal antibodies against amino-terminal regions of gp120 and had no effect on antibodies directed to other regions of gp120, including the carboxy terminus. The inhibitory effects of polyanionic polysaccharides on viral binding, viral replication, and formation of syncytia therefore appear mediated by interactions with positively charged amino acids concentrated in the V3 region. This high local positive charge density, unique to the V3 loop, leads us to propose that this property is critical to the function of the V3 region in mediating envelope binding and subsequent fusion between viral and cell membranes. The specific interaction of dextran sulfate with this domain suggests that structurally related molecules on the cell surface, such as heparan sulfate, may be additional targets for HIV binding and infection.  相似文献   

13.
In this study, we investigated the effects of certain respiratory drugs, which are mainly used on human serum paraoxonase‐1 (hPON1; EC 3.1.8.1). hPON1 was purified from human serum, with 354.91 fold and 45% yield by using two simple step procedures including, first, ammonium sulfate precipitation, then, Sepharose‐4B‐l ‐tyrosine‐1‐naphthylamine hydrophobic interaction chromatography. SDS‐polyacrylamide gel electrophoresis showed a single protein band belonging to hPON1 with 43 kDa. All the pharmaceutical compounds inhibited the PON1 enzyme highly at the micromolar level. The obtained IC50 values for nine different pharmaceutics ranged from 0.219 μM (salbutamol sulfate) to 67.205 μM (montelukast sodium). So, all drugs could be considered as potent hPON1 inhibitors. Ki values and inhibition types were determined by Lineweaver‐Burk graphs. While varenicline tartrate and moxifloxacin hydrochloride inhibited the enzyme in a noncompetitive manner, others inhibited it in a mixed manner.  相似文献   

14.
This case study addresses the difficulty in achieving high level expression and production of a small, very positively charged recombinant protein. The novel challenges with this protein include the protein's adherence to the cell surface and its inhibitory effects on Chinese hamster ovary (CHO) cell growth. To overcome these challenges, we utilized a multi‐prong approach. We identified dextran sulfate as a way to simultaneously extract the protein from the cell surface and boost cellular productivity. In addition, host cells were adapted to grow in the presence of this protein to improve growth and production characteristics. To achieve an increase in productivity, new cell lines from three different CHO host lines were created and evaluated in parallel with new process development workflows. Instead of a traditional screen of only four to six cell lines in bioreactors, over 130 cell lines were screened by utilization of 15 mL automated bioreactors (AMBR) in an optimal production process specifically developed for this protein. Using the automation, far less manual intervention is required than in traditional bench‐top bioreactors, and much more control is achieved than typical plate or shake flask based screens. By utilizing an integrated cell line and process development incorporating medium optimized for this protein, we were able to increase titer more than 10‐fold while obtaining desirable product quality. Finally, Monte Carlo simulations were performed to predict the optimal number of cell lines to screen in future cell line development work with the goal of systematically increasing titer through enhanced cell line screening. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1201–1211, 2015  相似文献   

15.
A simple two-step purification of protease nexin.   总被引:2,自引:1,他引:1       下载免费PDF全文
This paper describes a simple purification procedure for protease nexin, a serine proteinase inhibitor secreted by cultured human fibroblasts that regulates proteinase activity at and near the cell surface. The first step in the procedure takes advantage of the high-affinity binding of protease nexin to dextran sulphate-Sepharose. This step eliminates the need for prior concentration of the serum-free fibroblast-conditioned medium, since protease nexin binds to the resin in the presence of physiological saline. The use of dextran sulphate also provides an affinity resin with considerably less variability than the heparin-based resins previously used. Final purification to homogeneity involves a combination of DEAE-Sepharose in-line with dextran sulphate-Sepharose to simultaneously purify and concentrate the protein. Purified protease nexin is shown by Ouchterlony analysis and peptide mapping to be immunologically and structurally distinct from antithrombin III and heparin cofactor II, two plasma proteinase inhibitors with similar properties.  相似文献   

16.
The pressures to efficiently produce complex biopharmaceuticals at reduced costs are driving the development of novel techniques, such as in downstream processing with straight‐through processing (STP). This method involves directly and sequentially purifying a particular target with minimal holding steps. This work developed and compared six different 3‐step STP strategies, combining membrane adsorbers, monoliths, and resins, to purify a large, complex, and labile glycoprotein from Chinese hamster ovary cell culture supernatant. The best performing pathway was cation exchange chromatography to hydrophobic interaction chromatography to affinity chromatography with an overall product recovery of up to 88% across the process and significant clearance of DNA and protein impurities. This work establishes a platform and considerations for the development of STP of biopharmaceutical products and highlights its suitability for integration with single‐use technologies and continuous production methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:931–940, 2017  相似文献   

17.
We have developed a modified method of immobilized metal-ion affinity chromatography (IMAC) that can be used for the purification of histidine-tagged proteins from conditioned medium containing free copper ions. Classical methods of IMAC purification, using resins such as Ni-NTA, have proven inefficient for this type of purification and require multiple steps due to the interference of divalent copper ions with the binding of His-tagged protein to the charged resin. In contrast, this modified IMAC procedure, using chelating Sepharose instead of Ni-NTA, enables efficient purification from copper-containing medium in a single step. This method appears to rely upon a preferential interaction of protein-copper complexes with immobilized chelating resin. We have utilized this method to purify active, His-tagged murine interleukin 12 from the conditioned medium of Drosophila S2 cells coexpressing recombinant p40 and His-tagged p35 subunits and for the purification of the extracellular domain of the erythropoietin receptor. This method should be applicable to the purification of a wide variety of His-tagged fusion proteins expressed in Drosophila cells and in other systems where free metal ions are present.  相似文献   

18.
One major challenge currently facing the biopharmaceutical industry is to understand how MAb microheterogeneity affects therapeutic efficacy, potency, immunogenicity, and clearance. MAb micro‐heterogeneity can result from post‐translational modifications such as sialylation, galactosylation, C‐terminal lysine cleavage, glycine amidation, and tryptophan oxidation, each of which can generate MAb charge variants; such heterogeneity can affect pharmacokinetics (PK) considerably. Implementation of appropriate on‐line quality control strategies may help to regulate bioprocesses, thus enabling more homogenous material with desired post‐translational modifications and PK behavior. However, one major restriction to implementation of quality control strategies is the availability of techniques for obtaining on‐line or at‐line measurements of these attributes. In this work, we describe the development of an at‐line assay to separate MAb charge variants in near real‐time, which could ultimately be used to implement on‐line quality control strategies for MAb production. The assay consists of a 2D‐HPLC method with sequential in‐line Protein A and WCX‐10 HPLC column steps. To perform the 2D‐HPLC assay at‐line, the two columns steps were integrated into a single method using a novel system configuration that allowed parallel flow over column 1 or column 2 or sequential flow from column 1 to column 2. A bioreactor system was also developed such that media samples could be removed automatically from bioreactor vessels during production and delivered to the 2D‐HPLC for analysis. With this at‐line HPLC assay, we have demonstrated that MAb microheterogeneity occurs throughout the cell cycle whether the host cell line is grown under different or the same nominal culture conditions. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:249–255, 2014  相似文献   

19.
20.
Affordability of biopharmaceuticals continues to be a challenge, particularly in developing economies. This has fuelled advancements in manufacturing that can offer higher productivity and better economics without sacrificing product quality in the form of an integrated continuous manufacturing platform. While platform processes for monoclonal antibodies have existed for more than a decade, development of an integrated continuous manufacturing process for bacterial proteins has received relatively scant attention. In this study, we propose an end‐to‐end integrated continuous downstream process (from inclusion bodies to unformulated drug substance) for a therapeutic protein expressed in Escherichia coli as inclusion body. The final process consisted of a continuous refolding in a coiled flow inverter reactor directly coupled to a three‐column periodic counter‐current chromatography for capture of the product followed by a three‐column con‐current chromatography for polishing. The continuous bioprocessing train was run uninterrupted for 26 h to demonstrate its capability and the resulting output was analyzed for the various critical quality attributes, namely product purity (>99%), high molecular weight impurities (<0.5%), host cell proteins (<100 ppm), and host cell DNA (<10 ppb). All attributes were found to be consistent over the period of operation. The developed assembly offers smaller facility footprint, higher productivity, fewer hold steps, and significantly higher equipment and resin utilization. The complexities of process integration in the context of continuous processing have been highlighted. We hope that the study presented here will promote development of highly efficient, universal, end‐to‐end, fully continuous platforms for manufacturing of biotherapeutics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:998–1009, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号