首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, reverse micellar extraction of papain model system was performed using cetyltrimethylammonium bromide (CTAB)/iso-octane/hexanol/butanol system to optimize the forward and back extraction efficiency (BEE). A maximum forward extraction efficiency of 55.0, 61.0, and 54% was achieved with an aqueous phase pH of 11.0, 150?mM CTAB/iso-octane and 0.1?M NaCl, respectively. Taguchi’s orthogonal array was applied to optimize the pH of stripping phase, concentration of isopropyl alcohol (IPA) and potassium chloride (KCl) for maximizing BEE. The optimal levels of stripping phase pH, concentration of IPA and KCl were found to be 6, 20% (v/v), and 0.8?M, respectively. Under these optimal levels, the BEE was found to be 88% after which enzyme activity was recovered with 2.5-fold purification. Further optimization was performed using artificial neural network-linked genetic algorithm, where the BEE was improved to 90.52% with pH 6, IPA (%)?=?19.938, and KCl (M)?=?0.729.  相似文献   

2.
Reverse micellar systems of CTAB/isooctane/hexanol/butanol and AOT/isooctane are used for the extraction and primary purification of bromelain from crude aqueous extract of pineapple wastes (core, peel, crown and extended stem). The effect of forward as well as back extraction process parameters on the extraction efficiency, activity recovery and purification fold is studied in detail for the pineapple core extract. The optimized conditions for the extraction from core resulted in forward and back extraction efficiencies of 45% and 62%, respectively, using reverse micellar system of cationic surfactant CTAB. A fairly good activity recovery (106%) and purification (5.2-fold) of bromelain is obtained under these conditions. Reverse micellar extraction from peel, extended stem and crown using CTAB system resulted in purification folds of 2.1, 3.5, and 1.7, respectively. Extraction from extended stem using anionic surfactant AOT in isooctane did not yield good results under the operating conditions employed.  相似文献   

3.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

4.
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

6.
beta-Carotene has many applications in the food, cosmetic, and pharmaceutical industries; Dunaliella salina is currently the main source for natural beta-carotene. We have investigated the effect of mixing rate and whether it leads to the facilitated release of beta-carotene from the cells of Dunaliella salina in two-phase bioreactors. Three pairs of bioreactors were inoculated at the same time, operated at 100, 150, and 170 rounds per minute, respectively, and illuminated with a light intensity of 700 micromol m(-2) s(-1). Each pair consisted of one bioreactor containing only aqueous phase for the blank and one containing the water phase together with dodecane, which is biocompatible with the cells. Comparison of the viability and growth of the cells grown under different agitation rates shows that 170 rpm and 150 rpm are just as good as 100 rpm. The presence and absence of the organic phase also has no influence on the viability and growth of the cells. In contrast to the growth rate, the extraction rate of beta-carotene is influenced by the stirrer speed. The extraction rate increases at a higher stirring rate. The effectiveness of extraction with respect to power input is comparable for all the applied mixing rates, even though it is slightly lower for 100 rpm than the others. The chlorophyll concentration in the organic phase remained very low during the experiment, although at higher mixing rates, chlorophyll impurity increased up to 3% (w/w) of the total extracted pigments. At 170 rpm carotenoid and chlorophyll undergo the highest extraction rate for both pigments-0.5% of the chlorophyll and 6% of the carotenoid is extracted.  相似文献   

7.
The extraction of a relatively large molecular weight protein, bovine serum albumin (BSA), using nano-sized reverse micelles of nonionic surfactant polyoxyethylene p-t-octylphenol (Triton-X-100) is attempted for the first time. Suitability of reverse micelles of anionic surfactant sodium bis (2-ethyl hexyl) sulfosuccinate (AOT) and Triton-X-100/AOT mixture in organic solvent toluene for BSA extraction is also investigated. Although, the size of the Triton-X-100 reverse micelle in toluene is large enough to host BSA molecule in the hydraulic core, the overall extraction efficiency is found to be low, which may be due to lack of strong driving force. AOT/toluene system resulted in complete forward extraction at aqueous pH 5.5 and a surfactant concentration of 160 mM. The back extraction with aqueous phase (pH 5.5) resulted in 100% extraction of BSA from the organic phase. The addition of Triton-X-100 to AOT reduced the extraction efficiency of AOT reverse micelles, which may be attributed to reduced hydrophobic interaction. The circular dichroism (CD) spectrum of BSA extracted using AOT/toluene reverse micelles indicated the structural stability of the protein extracted.  相似文献   

8.
This work deals with the extraction and back-extraction of a recombinant cutinase using AOT reversed micelles in isooctane. The effect of pH, ionic strength, AOT concentration and temperature on the extraction and back-extraction of the cutinase was investigated. High extraction (97%) of the cutinase was achieved at pH 7.0 with a 50 mM Tris-HCl buffer solution containing 100 mM KCl, but a low activity was detected in the reversed micellar phase. At pH 9.0, cutinase was extracted (75%) to the reversed micelles with higher activity. Cutinase was recovered (50%) from a reversed micellar phase (100 mM AOT/isooctane) into a 50 mM Tris-HCl buffered solution at pH 9.0 with 100 mM KCl, and 20°C. Protein and cutinase activity global yields of 38 and 45%, respectively, were obtained for the global process, extraction and back-extraction steps, using low ionic strength, pH 9.0, 100 mM AOT and 20°C.Maria das Graças Carneiro da Cunha acknowledges a Ph.D. fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Centro de Pesquisas Aggeu Magalhães, Brasil. This work was partly financed by the BRIDGE Programme (Contract BIOT-CT91-0274(DTEE)).  相似文献   

9.
An efficient method using microwave energy was developed to extract homoharringtonine (HHT), an alkaloid component effective in the treatment of leukemia, from Cephalotaxus koreana. The effects of major process parameters on extraction efficiency were also investigated. Using a fixed biomass-to-methanol ratio of 1:8 (w/v), an extraction temperature of 30°C, an extraction time of 20 min, and a stirrer velocity of 250 rpm, a 25% higher yield of HHT was achieved using microwave-assisted extraction (MAE) than using conventional solvent extraction. It was possible to recover more than 95% of the HHT by extracting twice using MAE. In addition, the HHT yield increased as the extraction temperature increased, but the content of plant-derived tar and waxy compounds increased as well. Removal of these impurities and of the pigments from extracts was most effectively accomplished at a mixing ratio of biomass-to-sylopute of 1:1.5 (w/w). The effects of using different organic solvents (acetone, chloroform, ethanol, or methanol) for MAE were also assessed; the highest extraction efficiency was obtained using methanol. When the agitation speed was altered, most of the HHT (> 99%) was recovered at 250 rpm. A mixing ratio of biomass-to-methanol of 1:6 (w/v) at an extraction temperature of 40°C and an extraction time of 10 min proved to be the most effective for reducing processing time and organic solvent usage while enabling nearly all of the HHT (> 99%) to be recovered.  相似文献   

10.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

11.
Purification schemes for antibody production based on affinity chromatography are trying to keep pace with increases in cell culture expression levels and many current research initiatives are focused on finding alternatives to chromatography for the purification of Monoclonal antibodies (MAbs). In this article, we have investigated an alternative separation technique based on liquid–liquid extraction called the reverse micellar extraction. We extracted MAb (IgG1) using reverse micelles of an anionic surfactant, sodium bis 2‐ethyl‐hexyl sulfosuccinate (AOT) and a combination of anionic (AOT) and nonionic surfactants (Brij‐30, Tween‐85, Span‐85) using isooctane as the solvent system. The extraction efficiency of IgG1 was studied by varying parameters, such as pH of the aqueous phase, cation concentration, and type and surfactant concentration. Using the AOT/Isooctane reverse micellar system, we could achieve good overall extraction of IgG1 (between 80 and 90%), but only 30% of the bioactivity of IgG1 could be recovered at the end of the extraction by using its binding to affinity chromatography columns as a surrogate measure of activity. As anionic surfactants were suspected as being one of the reasons for the reduced activity, we decided to combine a nonionic surfactant with an anionic surfactant and then study its effect on the extraction efficiency and bioactivity. The best results were obtained using an AOT/Brij‐30/Isooctane reverse micellar system, which gave an overall extraction above 90 and 59% overall activity recovery. An AOT/Tween‐85/Isooctane reverse micellar system gave an overall extraction of between 75 and 80% and overall activity recovery of around 40–45%. The results showed that the activity recovery of IgG1 can be significantly enhanced using different surfactant combination systems, and if the recovery of IgG1 can be further enhanced, the technique shows considerable promise for the downstream purification of MAbs. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Proteins (bovine serum albumin (BSA), α‐chymotrypsin, cytochrome c, and lysozyme) were extracted from 0.5 to 2.0 g L?1 aqueous solution by adding an equal volume of isooctane solution that contained a surfactant mixture (Aerosol‐OT, or AOT, and a 1,3‐dioxolane (or cyclic ketal) alkyl ethoxylate, CK‐2,13‐E5.6), producing a three‐phase (Winsor‐III) microemulsion with a middle, bicontinuous microemulsion, phase highly concentrated in protein (5–13 g L?1) and small in volume (12–20% of entire volume). Greater than 90% forward extraction was achieved within a few minutes. Robust W‐III microemulsion systems were formulated at 40°C, or at 25°C by including a surfactant with shorter ethoxylate length, CK‐2,13‐E3, or 1.5% NaCl (aq). Successful forward extraction correlated with high partitioning of AOT in the middle phase (>95%). The driving force for forward extraction was mainly electrostatic attractions imposed by the anionic surfactant AOT, with the exception of BSA at high ionic strength, which interacted via hydrophobic interactions. Through use of aqueous stripping solutions of high ionic strength (5.0 wt %) and/or pH 12.0 (to negate the electrostatic attractive driving force), cytochrome c and α‐chymotrypsin were back extracted from the middle phase at >75% by mass, with the specific activity of recovered α‐chymotrypsin being >90% of its original value. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

13.
A new type of liquid emulsion membrane containing reversed micelles for protein extraction is introduced. A three-step extraction mechanism is proposed including solubilization, transportation, and release of the protein. The surfactants Span80 and sodium di(2-ethylhexyl)sulfosuccinate (AOT) are used to stabilize the membrane phase and to build up the reversed micelles, respectively. alpha-Chymotrypsin was used as the model protein. The condition in the internal phase inhibits the solubilization process of the already extracted protein back into reversed micelles. Concerning the solubilization, we studied the influence of the AOT concentration in the membrane phase and the ionic strength in the external phase. The extraction rate increases with higher AOT concentration and decreases with higher ionic strength. Using NaCl in the external phase led to better extraction results than using KCl. Maximum extraction results of 98% into the membrane phase and 65% into the internal phase were obtained. This condition retained 60% of the enzyme's activity. The concentration of KCl in the internal phase does not affect the solubilization rate but the release into the internal phase. By this way the ionic strength in the internal phase is used as the driving force for the protein release. The solubilization process is much faster than the diffusion and the releasing process, as found by variation of the extraction time. The influence of the operating conditions on the membrane swelling is also discussed. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 267-273, 1997.  相似文献   

14.
Solubilizing water involved in protein extraction using reversed micelles   总被引:4,自引:0,他引:4  
The extraction of protein using reversed micelles was investigated in relation to the amount of solubilizing water in the reversed micellar organic phase. The minimal concentration of amphiphilic molecule di-2-ethylhexyl sodium sulfosuccinate (C(20)H(37)O(7)Na) (AOT) required for 100% cytochrome c extraction was recognized. This critical AOT concentration increased with protein concentration in the aqueous phase. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein was found to be a constant of 3500 under C(KCI) = 1.0 x 10(2) mol . m(-3) in this system. This ratio means the hydrophillic surroundings required for extracting one protein molecule into the micellar organic phase under the suitable pH and salt concentration for the forward extraction. In this regard, AOT molecules seemed to take the part of water solubilizing agent in the reversed micellar extraction. This role of AOT is important to extract protein under the suitable pH and salt concentration. The amount of solubilizing water in the protein-containing system was larger than in the protein-free system. This difference shows that the water molecules accompany the extracted protein into the reversed micellar organic phase at constant ratio 2200 under C(KCI) = 1.0 x 10(2) mol . m(-3), i.e., accompanying water molecules per one extracted protein. The minimal AOT concentration increased with ionic strength. On this minimal AOT condition, the molar ratio of solubilizing water to extracted protein also increased with ionic strength, so that in higher ionic strength, more solubilizing water was required. Then more AOT was required to provide the hydrophillic surroundings for protein. The pH affected the minimal AOT concentration required for 100% protein extraction.  相似文献   

15.
Liquid phase microextraction by back extraction (LPME-BE) combined with high performance liquid chromatography (HPLC)-fluorescence detection was developed for the determination of tramadol in human plasma. Tramadol was extracted from 2 mL of basic sample solution (donor phase) with pH 11.5 through a micro liter-size organic solvent phase (100 microL n-octane) for 25 min and finally into a 3.5 microL acidic aqueous acceptor microdrop with pH 2.5 suspended in the organic phase from the tip of a HPLC microsyringe needle for 15 min with the stirring rate of 1250 rpm. After extraction for a period of time, the microdrop was taken back into the syringe and injected into HPLC. Effected the experimental parameters such as the nature of the extracting solvent and its volume, sample temperature, stirring rate, volume of the acceptor phase, pH and extraction time on LPME-BE efficiency was investigated. At the optimized condition, enrichment factor of 366 and detection limit (LOD) of 0.12 microg L(-1) were obtained. The calibration curve was linear (r=0.999) in the concentration range of 0.3-130 microg L(-1). Within-day relative standard deviation RSD (S/N=3) and between-day RSD were 3.16% and 6.29%, respectively. The method was successfully applied to determine the concentration of tramadol in the plasma and urine samples and satisfactory results were obtained.  相似文献   

16.
Selective separation and purification of two lipases form Chromobacterium viscosum were carried out by liquid-liquid extraction using a reversed micellar system. Optimum parameters for extraction were determined using a 250 mM AOT micellar solution in isooctane. Complete separation of the two lipases was achieved at pH 6.0 with a 50mM potassium phosphate buffer solution containing 50 mM KCI. By adding 2.5% by volume of ethanol to the lipase-loaded micellar solution, 85% of the extracted lipase could be recovered in a new aqueous phase, 50 mM K(2)HPO(4) with 50 mM KCl, at pH 9.0. Lipase A was purified 2.6-fold with a recovery of 86%, and lipase B by 1.5-fold with a recovery of 76%.  相似文献   

17.
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase ( PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t‐butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0‐40% (w/v), extract to t‐butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0‐40% (w/v), crude extract to t‐butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26‐36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1340–1347, 2015  相似文献   

18.
Reverse micellar extraction of lipase using cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of various process parameters on both forward and backward extraction of lipase from crude extract was studied to optimize its yield and purity. Forward extraction of lipase was found to be maximum using Tris buffer at pH 9.0 containing 0.10 M NaCl in aqueous phase and 0.20 M CTAB in organic phase consisting of isooctane, butanol and hexanol. In case of backward extraction, lipase was extracted from the organic phase to a fresh aqueous phase in 0.05 M potassium phosphate buffer (pH 7.0) containing 1.0 M KCl. The activity recovery, extraction efficiency and purification factor of lipase were found to be 82.72%, 40.27% and 4.09-fold, respectively. The studies also indicated that the organic phase recovered after back extraction could be reused for the extraction of lipase from crude extract.  相似文献   

19.
用反胶束技术分离纯化蛋白质,具有高选择性、易于大规模操作等优点,具有良好的工业应用前景。但是离子型表面活性剂形成的反胶束体系萃取蛋白质容易引起蛋白质的变性,这是由于离子型表面活性剂的强电荷作用所导致的。对用AOT/异辛烷反胶束体系从胰酶粗提物中萃取胰蛋白酶进行了研究,通过在反胶束相加入乙醇,解决了反胶束萃取蛋白质时蛋白质变性失活的问题。并且由于乙醇的加入大大减少了分相的时间,简化了实验步骤,优化了实验方法,使此技术在工业上的大规模应用成为可能。通过优化各种实验条件,胰蛋白酶的前萃取率达到90%,反萃取率接近100%。最终得率为88%。纯化后的比活提高了5倍多,从300U/mg左右提高到了1800U/mg。  相似文献   

20.
The extraction of lactoperoxidase (EC 1.11.1.7) from whey was studied using single step reverse micelles‐assisted extraction and compared with reverse micellar extraction. The reverse micelles‐assisted extraction resulted in extraction of contaminating proteins and recovery of lactoperoxidase in the aqueous phase leading to its purification. Reverse micellar extraction at the optimized condition after forward and backward steps resulted in activity recovery of lactoperoxidase and purification factor of the order of 86.60% and 3.25‐fold, respectively. Whereas reverse micelles‐assisted extraction resulted in higher activity recovery of lactoperoxidase (127.35%) and purification factor (3.39‐fold). The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) profiles also evidenced that higher purification was obtained in reverse micelles‐assisted extraction as compared of reverse micellar extracted lactoperoxidase. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号