首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of mammalian cell DNA synthesis by ionizing radiation   总被引:4,自引:0,他引:4  
A semi-log plot of the inhibitory effect of ionizing radiation on the rate of DNA synthesis in normal mammalian cells yields a two-component curve. The steep component, at low doses, has a D0 of about 5 Gy and is the result of blocks to initiation of DNA replicons. The shallow component, at high doses, has a D0 of greater than or equal to 100 Gy and is the result of blocks to DNA chain elongation. The target size for the inhibition of DNA replicon initiation is about 1000 kb, and the target size for inhibition of DNA chain elongation is about 50 kb. There is evidence that the target for both components is DNA alone. Therefore, the target size for inhibition of DNA chain elongation is consistent with the idea that an effective radiation-induced lesion in front of the DNA growing point somehow blocks its advance. The target size for inhibition of DNA replicon initiation is so large that it must include many replicons, which is consistent with the concept that a single lesion anywhere within a large group (cluster) of replicons is sufficient to block the initiation of replication of all replicons within that cluster. Studies with radiosensitive human cell mutants suggest that there is an intermediary factor whose normal function is necessary for radiation-induced lesions to cause the inhibition of replicon initiation in clusters and to block chain elongation; this factor is not related to poly(ADP-ribose) synthesis. Studies with radiosensitive Chinese hamster cell mutants suggest that double-strand breaks and their repair are important in regulating the duration of radiation-induced inhibition of replicon initiation but have little to do with effects on chain elongation. There is no simple correlation between inhibition of DNA synthesis and cell killing by ionizing radiation.  相似文献   

2.
The hyperthermic inhibition of cellular DNA synthesis, i.e., reduction in replicon initiation and delay in DNA chain elongation, was previously postulated to be involved in the induction of chromosomal aberrations believed to be largely responsible for killing S-phase cells. Utilizing asynchronous Chinese hamster ovary cells heated for 15 min at 45.5 degrees C, an increase in single-stranded regions in replicating DNA (as measured by BND-cellulose chromatography) persisted in heated cells for as long as replicon initiation was affected. Alkaline sucrose gradient analyses of cells pulse-labeled immediately after heating with [3H]thymidine and subsequently chased at 37 degrees C revealed that these S-phase cells can eventually complete elongation of the replicons in operation at the time of heating, but required about six times as long relative to control cells which completed replicon elongation within 4 h. DNA chain elongation into multicluster-sized molecules was prevented for up to 18 h in these heated cells, resulting in a buildup of cluster-sized molecules (approximately 120-160 S) mainly because of the long-term heat damage to the replicon initiation process. Utilizing bromodeoxyuridine (BrdU)-propidium iodide bivariate analysis on a flow cytometer to measure cell progression, control cells pulsed with BrdU and chased in unlabeled medium progressed through S and G2M with cell division starting after 2 h of chase time. In contrast, the majority of the heated S-phase cells progressed slowly and remained blocked in S phase for about 18 h before cell division was observed after 24 h postheat. Our findings suggest that possible sites for where the chromosomal aberrations may be occurring in heated S-phase cells are either (1) at the persistent single-stranded DNA regions or (2) at the regions between clusters of replicons, because this long-term heat damage to the DNA replication process might lead to many opportunities for abnormal DNA and/or protein exchanges to occur at these two sites.  相似文献   

3.
Effect of puromycin on DNA replication in Chinese hamster cells   总被引:11,自引:0,他引:11  
We have used autoradiography to examine the effect of puromycin on DNA replication in Chinese hamster cells aligned by treatment with fluorodeoxy-uridine. In the absence of puromycin the patterns of replication are consistent with those obtained previously by others (Cairns, 1966; Huberman &; Riggs, 1968). In particular, replication occurs in tandem clusters of replicons but not all replicons in a cluster appear to be activated at the same time.Puromycin decreases the over-all rate of synthesis of DNA per cell, but does not inhibit chain elongation as visualized in autoradiograms. It is suggested that puromycin inhibits the initiation of replication of replicons not yet activated. Puromycin prevents the joining of short stretches of radioactive DNA into longer pieces. This may be due to the inability to activate a few late replicating units within a cluster of replicons.  相似文献   

4.
At any moment during S phase, regions of genomic DNA are in various stages of replication (i.e. initiation, chain elongation, and termination). These stages may be differentially inhibited after treatment with various carcinogens that damage DNA such as UV. We used visualization of active replication units in combed DNA fibers, in combination with quantitative analyses of the size distributions of nascent DNA, to evaluate the role of S-checkpoint proteins in UV-induced inhibition of DNA replication. When HeLa cells were exposed to a low fluence (1 J/m2) of 254 nm UV light (UVC), new initiation events were severely inhibited (5-6-fold reduction). A larger fluence of UVC (10 J/m2) resulted in stronger inhibition of the overall rate of DNA synthesis without decreasing further the frequency of replicon initiation events. Incubation of HeLa cells with caffeine and knockdown of ATR or Chk1 kinases reversed the UVC-induced inhibition of initiation of new replicons. These findings illustrate the concordance of data derived from different experimental approaches, thus strengthening the evidence that the activation of the intra-S checkpoint by UVC is dependent on the ATR and Chk1 kinases.  相似文献   

5.
6.
7.
Chou T 《Biophysical journal》2003,85(2):755-773
We explore and quantify the physical and biochemical mechanisms that may be relevant in the regulation of translation. After elongation and detachment from the 3' termination site of mRNA, parts of the ribosome machinery can diffuse back to the initiation site, especially if it is held nearby, enhancing overall translation rates. The elongation steps of the mRNA-bound ribosomes are modeled using exact and asymptotic results of the totally asymmetric exclusion process. Since the ribosome injection rates of the totally asymmetric exclusion process depend on the local concentrations at the initiation site, a source of ribosomes emanating from the termination end can feed back to the initiation site, leading to a self-consistent set of equations for the steady-state ribosome throughput. Additional mRNA binding factors can also promote loop formation, or cyclization, bringing the initiation and termination sites into close proximity. The probability distribution of the distance between the initiation and termination sites is described using simple noninteracting polymer models. We find that the initiation, or initial ribosome adsorption binding required for maximal throughput, can vary dramatically depending on certain values of the bulk ribosome concentration and diffusion constant. If cooperative interactions among the loop-promoting proteins and the initiation/termination sites are considered, the throughput can be further regulated in a nonmonotonic manner. Experiments that can potentially test the hypothesized physical mechanisms are discussed.  相似文献   

8.
UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m(2) UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.  相似文献   

9.
The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences (<1 J/m2, producing less than one pyrimidine dimer per replicon) rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates without noticeably affecting synthesis in multi-repliconsize intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher (>1 J/m2, producing more than one dimer per replicon) cytotoxic fluences inhibited DNA synthesis in operating replicons presumably because the elongation of nascent strands was blocked where pyrimidine dimers were present in template strands. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences. indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation than the repair-deficient strains despite their ability to remove pyrimidine dimers. This analysis suggests that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery.  相似文献   

10.
A new method is described for estimating replicon sizes in mammalian cells. Cultures were pulse labeled with [3H]thymidine ([3H]TdR) and bromodeoxyuridine (BrdUrd) for up to 1 h. The lengths of the resulting labeled regions of DNA, Lobs, were estimated by a technique wherein the change in molecular weight of nascent DNA strands, induced by 313 nm light, is measured by velocity sedimentation in alkaline sucrose gradients. If cells are exposed to 1,000 rads of X-rays immediately before pulse labeling, initiation of replicon operation is blocked, although chain elongation proceeds almost normally. Under these conditions Lobs continues to increase only until operating replicons have completed their replication. This value for Lobs then remains constant as long as the block to initiation remains and represents an estimate for the average size of replicons operating in the cells before X-irradiation. For human diploid fibroblasts and human HeLa cells this estimated average size is approximately 17 micron, whereas for Chinese hamster ovary cells, the average replicon size is about 42 micron.  相似文献   

11.
Incubation of mouse cells with N-methyl-N′-nitro-N-nitrosoguanidine causes a strong inhibition of DNA replication the extent of which varies with the cell line used. Analysis of the products synthesized in drug-treated cells indicates a particularly severe effect on the joining of replicons while other steps in DNA synthesis like initiation and chain elongation are much less affected. The data indicate that replicon fusion may be extremely sensitive to changes in the topology of DNA induced by the introduction of rare single-strand breaks during repair of N-methylated purines produced by incubation of cells with small amounts of the methylating agent  相似文献   

12.
We present a kinetic model of protein synthesis which encompasses initiation, elongation, and termination parameters. We have investigated the dependence of the total rate of protein synthesis and the size of the translating polysomes on each of these parameters and in particular on the level of active 40 S ribosomes and initiation factors. This model qualitatively fits experimental data for the ratio of alpha- to beta-globin synthesis in reticulocytes, both under normal conditions and in the presence of inhibitors of chain initiation. This model has also been used to examine the effect that limiting amounts of certain tRNAs might have on the total rate of protein synthesis. In addition, the role of initiation factor discrimination and mRNA length are examined with respect to the differential translation of mRNAs.  相似文献   

13.
Contemporary models for protein translocation in the mammalian endoplasmic reticulum (ER) identify the termination of protein synthesis as the signal for ribosome release from the ER membrane. We have utilized morphometric and biochemical methods to assess directly the fate of membrane-bound ribosomes following the termination of protein synthesis. In these studies, tissue culture cells were treated with cycloheximide to inhibit elongation, with pactamycin to inhibit initiation, or with puromycin to induce premature chain termination, and ribosome-membrane interactions were subsequently analyzed. It was found that following the termination of protein synthesis, the majority of ribosomal particles remained membrane-associated. Analysis of the subunit structure of the membrane-bound ribosomal particles remaining after termination was conducted by negative stain electron microscopy and sucrose gradient sedimentation. By both methods of analysis, the termination of protein synthesis on membrane-bound ribosomes was accompanied by the release of small ribosomal subunits from the ER membrane; the majority of the large subunits remained membrane-bound. On the basis of these results, we propose that large ribosomal subunit release from the ER membrane is regulated independently of protein translocation.  相似文献   

14.
DNA replication programs have been studied extensively in yeast and animal systems, where they have been shown to correlate with gene expression and certain epigenetic modifications. Despite the conservation of core DNA replication proteins, little is known about replication programs in plants. We used flow cytometry and tiling microarrays to profile DNA replication of Arabidopsis thaliana chromosome 4 (chr4) during early, mid, and late S phase. Replication profiles for early and mid S phase were similar and encompassed the majority of the euchromatin. Late S phase exhibited a distinctly different profile that includes the remaining euchromatin and essentially all of the heterochromatin. Termination zones were consistent between experiments, allowing us to define 163 putative replicons on chr4 that clustered into larger domains of predominately early or late replication. Early-replicating sequences, especially the initiation zones of early replicons, displayed a pattern of epigenetic modifications specifying an open chromatin conformation. Late replicons, and the termination zones of early replicons, showed an opposite pattern. Histone H3 acetylated on lysine 56 (H3K56ac) was enriched in early replicons, as well as the initiation zones of both early and late replicons. H3K56ac was also associated with expressed genes, but this effect was local whereas replication time correlated with H3K56ac over broad regions. The similarity of the replication profiles for early and mid S phase cells indicates that replication origin activation in euchromatin is stochastic. Replicon organization in Arabidopsis is strongly influenced by epigenetic modifications to histones and DNA. The domain organization of Arabidopsis is more similar to that in Drosophila than that in mammals, which may reflect genome size and complexity. The distinct patterns of association of H3K56ac with gene expression and early replication provide evidence that H3K56ac may be associated with initiation zones and replication origins.  相似文献   

15.
Transcription termination in animal viruses and cells   总被引:10,自引:0,他引:10  
  相似文献   

16.
In higher eukaryotic cells, DNA is tandemly arranged into 10(4) replicons that are replicated once per cell cycle during the S phase. To achieve this, DNA is organized into loops attached to the nuclear matrix. Each loop represents one individual replicon with the origin of replication localized within the loop and the ends of the replicon attached to the nuclear matrix at the bases of the loop. During late G1 phase, the replication origins are associated with the nuclear matrix and dissociated after initiation of replication in S phase. Clusters of several replicons are operated together by replication factories, assembled at the nuclear matrix. During replication, DNA of each replicon is spooled through these factories, and after completion of DNA synthesis of any cluster of replicons, the respective replication factories are dismantled and assembled at the next cluster to be replicated. Upon completion of replication of any replicon cluster, the resulting entangled loops of the newly synthesized DNA are resolved by topoisomerases present in the nuclear matrix at the sites of attachment of the loops. Thus, the nuclear matrix plays a dual role in the process of DNA replication: on one hand, it represents structural support for the replication machinery and on the other, provides key protein factors for initiation, elongation, and termination of the replication of eukaryotic DNA.  相似文献   

17.
We have used a newly developed pH stepwise alkaline elution method to show that caffeine enhances DNA initiation (DNA replication in sub-replicon size nascent strands) in (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene (BPDEI) damaged mouse primary epidermal cells. Caffeine alone caused a dose-dependent increase in DNA initiation without an effect on DNA elongation (joining of replicon-sized nascent DNA). BPDEI alone inhibited DNA elongation as shown by a relative increase in sub-replicon size nascent DNA. When BPDEI treated cells were incubated with caffeine, there was a dose-dependent increase in sub-replicon size nascent DNA without a significant effect on the proportion of joined replicons. Therefore, caffeine can enhance DNA initiation in mammalian cells damaged with a reactive form of the carcinogen benzo[a]pyrene and this may account for the biological interaction between caffeine and the ultimate carcinogenic form of benzo[a]pyrene.  相似文献   

18.
The mode of action of the antibiotic, trichodermin, on yeast cells has been investigated. Trichodermin specifically inhibits protein synthesis and, during the in vivo inhibition of protein synthesis, ribosomes remain in polyribosomes rather than shifting to monoribosomes. This observation suggests that trichodermin inhibits either an elongation step or a termination step of protein biosynthesis. These two possibilities were distinguished by comparing the action of trichodermin with that of cycloheximide, a known elongation inhibitor, upon the reformation of polyribosomes during recovery from a block in polypeptide chain initiation. Cycloheximide slows the recovery of polyribosomes from monoribosomes following a block in polypeptide chain initiation whereas trichodermin enhances the recovery of polyribosomes. This observation is interpreted to mean that trichodermin primarily inhibits the termination step of protein biosynthesis.  相似文献   

19.
The effect of antitumor antibiotic neocarzinostatin on DNA replication in HeLa cells was studied by pulse-labeling of DNA with [3H]thymidine and sedimentation analysis of the DNA with alkaline sucrose gradients. The drug, which produced DNA damage, primarily inhibited the replicon initiation in the cells at low doses (less than or equal to 0.1 microgram/ml), and at high doses (greater than or equal to 0.5 microgram/ml) inhibited the DNA chain elongation. An analysis of the number of single-strand breaks of parental DNA, induced by neocarzinostatin, indicated that inhibition of the initiation occurred with introduction of single-strand breaks of less than 1.5 . 10(4)/cell, while inhibition of the elongation occurred with introduction of single-strand breaks of more than 7.5 . 10(4)/cell. Assuming that the relative molecular mass of DNA/HeLa cell was about 10(13) Da, the target size of DNA for inhibition of replicon initiation was calculated to be about 10(9) Da, such being close to an average size of loop DNA in the cell and for inhibition of chain elongation, 1-2 . 10(8) Da which was of the same order of magnitude as the size of replicons. Recovery of inhibited DNA replication by neocarzinostatin occurred during post-incubation of the cells and seemed to correlate with the degree of rejoining of the single-strand breaks of parental DNA. Caffeine and theophylline enhanced the recovery of the inhibited replicon initiation, but did not aid in the repair of the breaks in parental DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号