首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated hepatic stellate cells (HSC) are the major source of collagen I in liver fibrosis. Eugenia uniflora L. is a tree species that is widely distributed in South America. E. uniflora L. fruit—popularly known as pitanga—has been shown to exert beneficial properties. Autophagy contributes to the maintenance of cellular homeostasis and survival under stress situation, but it has also been suggested to be an alternative cell death pathway. Mitochondria play a pivotal role on signaling cell death. Mitophagy of damaged mitochondria is an important cell defense mechanism against organelle-mediated cell death signaling. We previously found that purple pitanga extract induced mitochondrial dysfunction, cell cycle arrest, and death by apoptosis and necrosis in GRX cells, a well-established activated HSC line. We evaluated the effects of 72-h treatment with crescent concentrations of purple pitanga extract (5 to 100 μg/mL) on triggering autophagy in GRX cells, as this is an important mechanism to cells under cytotoxic conditions. We found that all treated cells presented an increase in the mRNA expression of autophagy-related protein 7 (ATG7). Concomitantly, flow cytometry and ultrastructural analysis of treated cells revealed an increase of autophagosomes/autolysosomes that consequentially led to an increased mitophagy. As purple pitanga extract was previously found to be broadly cytotoxic to GRX cells, we postulated that autophagy contributes to this scenario, where cell death seems to be an inevitable fate. Altogether, the effectiveness on inducing activated HSC death can make purple pitanga extract a good candidate on treating liver fibrosis.  相似文献   

2.
The present work reports on the biological activity of alfalfa (Medicago sativa) saponins on white poplar (Populus alba, cultivar ‘Villafranca’) cell suspension cultures. The extracts from alfalfa roots, aerial parts and seeds were characterized for their saponin content by means of thin layer chromatography (TLC) and electrospray ionisation coupled to mass spectrometry. The quantitative saponin composition from the different plant extracts was determined considering the aglycone moieties and determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) analyses. Only soyasapogenin I was detected in the seed extract while several other saponins were found in the root and leaf extracts. Actively proliferating white poplar cell cultures were challenged with the different saponin extracts. Only alfalfa root saponins, at 50 µg ml?1, induced significant cell death rates (75.00 ± 4.90%). Different cell subpopulations with peculiar cell death morphologies were observed and the programmed cell death (PCD)/necrosis ratio was reduced at increasing saponin concentrations. Enhancement of nitric oxide (NO) production was observed in white poplar cells treated with root saponins (RSs) at 50 µg ml?1 and release of reactive oxygen species (ROS) in the culture medium was also demonstrated. Saponin‐induced NO production was sensitive to sodium azide and NG‐monomethyl‐l ‐arginine, two specific inhibitors of distinct pathways for NO biosynthesis in plant cells.  相似文献   

3.
Aims: The aim of this work was to analyse the antimicrobial properties of a purified lectin from Eugenia uniflora L. seeds. Methods and Results: The E. uniflora lectin (EuniSL) was isolated from the seed extract and purified by ion‐exchange chromatography in DEAE‐Sephadex with a purification factor of 11·68. The purified lectin showed a single band on denaturing electrophoresis, with a molecular mass of 67 kDa. EuniSL agglutinated rabbit and human erythrocytes with a higher specificity for rabbit erythrocytes. The haemagglutination was not inhibited by the tested carbohydrates but glycoproteins exerted a strong inhibitory action. The lectin proved to be thermo resistant with the highest stability at pH 6·5 and divalent ions did not affect its activity. EuniSL demonstrated a remarkable nonselective antibacterial activity. EuniSL strongly inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella sp. with a minimum inhibitory concentration (MIC) of 1·5 μg ml?1, and moderately inhibited the growth of Bacillus subtilis, Streptococcus sp. and Escherichia coli with a MIC of 16·5 μg ml?1. Conclusions: EuniSL was found to be effective against bacteria. Significance and Impact of the Study: The strong antibacterial activity of the studied lectin indicates a high potential for clinical microbiology and therapeutic applications.  相似文献   

4.
5.
Aims: To establish the effect of Quercus infectoria G. Olivier extract and its main constituent, tannic acid, on staphylococcal biofilm and their anti‐biofilm mechanisms. Methods and Results: Anti‐biofilm activity of the plant materials on clinical isolated of methicillin‐resistant Staphylococcus aureus and methicillin‐susceptible Staph. aureus was employed using a crystal violet‐stained microtiter plate method. The extract at minimum inhibitory concentration (MIC; 0·25 mg ml?1) was significantly reduced the biofilm formation of the isolates (P < 0·05). The effect on staphylococcal cell surface hydrophobicity (CSH) of the test compounds was investigated as a possible mode of action of the anti‐biofilm activity. The hydrophobicity index of all the bacterial isolates increased following treatment with supra‐MIC, MIC and sub‐MIC of the extract and tannic acid. Observation of the treated bacterial cells by electron microscopy revealed that the test compounds caused clumps of partly divided cocci with thickened and slightly rough cell wall. Conclusions: The results indicated that Q. infectoria extract and tannic acid affected staphylococcal biofilm formation and their effect on bacterial CSH and cell wall may involve in the anti‐biofilm activity. Significance and Impact of the Study: This evidence highlighted the anti‐biofilm potency of the natural products and clarified their anti‐biofilm mechanisms.  相似文献   

6.
Two new fish cell lines were established from skin (LWSK) and fin (LWFN) of leopard wrasse Macropharyngodon geoffroy. These cells grew optimally at 25° C in Leibovitz‐15 medium supplemented with 10% foetal bovine serum. Proliferation of M. geoffroy cells remained serum dependent up to cell passage 16, and cell‐plating efficiency ranged from 12 to 16%. Karyotypic analysis of these new cell lines at cell passage 8 indicated that both cell lines remained diploid with a peak chromosomal count of 144. PCR amplification of 16S mitochondrial DNA and the subsequent analysis confirmed that these cell lines were indeed derived from M. geoffroy. Results of viral challenge assays revealed that both LWSK and LWFN shared patterns of viral susceptibility similar to that of six fish viruses tested: LWSK and LWFN cells were highly permissive to channel catfish virus, spring viremia carp virus and snakehead rhabdovirus with high‐yield virus production ranging from 107·18±0·17 to 108·37±0·16 TCID50 ml?1 (mean ± s.d .). These newly established cell lines would be useful in attempts to isolate and study aquatic viruses, particularly the viral aetiology of green turtle fibropapilloma as M. geoffroy is known to be one of the common cleaner fish of green sea turtles.  相似文献   

7.
We observed that treatment of prostate cancer cells for 24 h with magnolol, a phenolic component extracted from the root and stem bark of the oriental herb Magnolia officinalis, induced apoptotic cell death in a dose‐ and time‐dependent manner. A sustained inhibition of the major survival signal, Akt, occurred in magnolol‐treated cells. Treatment of PC‐3 cells with an apoptosis‐inducing concentration of magnolol (60 µM) resulted in a rapid decrease in the level of phosphorylated Akt leading to inhibition of its kinase activity. Magnolol treatment (60 µM) also caused a decrease in Ser(136) phosphorylation of Bad (a proapoptotic protein), which is a downstream target of Akt. Protein interaction assay revealed that Bcl‐xL, an anti‐apoptotic protein, was associated with Bad during treatment with magnolol. We also observed that during treatment with magnolol, translocation of Bax to the mitochondrial membrane occurred and the translocation was accompanied by cytochrome c release, and cleavage of procaspase‐8, ‐9, ‐3, and poly(ADP‐ribose) polymerase (PARP). Similar results were observed in human colon cancer HCT116Bax+/? cell line, but not HCT116Bax?/? cell line. Interestingly, at similar concentrations (60 µM), magnolol treatment did not affect the viability of normal human prostate epithelial cell (PrEC) line. We also observed that apoptotic cell death by magnolol was associated with significant inhibition of pEGFR, pPI3K, and pAkt. These results suggest that one of the mechanisms of the apoptotic activity of magnolol involves its effect on epidermal growth factor receptor (EGFR)‐mediated signaling transduction pathways. J. Cell. Biochem. 106: 1113–1122, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The in vitro cytotoxicity of the antimicrobial peptide P34 was evaluated in different eukaryotic cells. The food‐grade bacteriocin nisin was also analysed for comparison. Vero cells were treated with different concentrations (0.02–2.5 μg·ml?1) of antimicrobial peptide P34 and nisin. Cell viability and plasma membrane integrity were checked by MTT [3‐(4,5‐dimethylthiazole‐2‐yl)‐2,5‐diphenyltetrazolium bromide], NRU (Neutral Red dye uptake) and LDH (lactate dehydrogenase) assays. The EC50 values of the peptide P34 in MTT and NRU assays were 0.60 and 1.25 μg·ml?1 respectively, while values of nisin found were 0.50 and 1.04 μg·ml?1. In the LDH assay, the EC50 values were 0.65 and 0.62 μg·ml?1 for P34 and nisin, respectively. The peptide P34 revealed similar haemolytic activity on human erythrocytes (5.8%) when compared with nisin (4.9%). The effects on viability, motility and acrosomal exocytosis of human sperm were also evaluated. Nisin and P34 showed similar effects on sperm parameters. The evaluation of cytotoxicity of antimicrobial peptides is a critical step to guarantee their safe use.  相似文献   

9.
Reactive oxygen species (ROS) have been implicated in the aetiology of several pathological and degenerative diseases. The protective effect of natural products possessing antioxidant properties has played a crucial role in ameliorating these deleterious effects. This study investigated the chemoprotective properties of the methanolic extract of Vernonia amygdalina (MEVA) in an experimental model of tert‐butyl hydroperoxide (t‐BHP)–induced human erythrocyte lysis in vitro. Haemolysis was induced by incubating erythrocytes with t‐BHP (2 and 3 mM) in vitro. Samples of erythrocyte suspensions were removed at different intervals over a 6‐h period, and the degree of haemolysis was measured. The anti‐haemolytic effect of MEVA at 25–150 µg ml–1 concentrations on the samples were assessed and compared with Triton X‐100. Administration of t‐BHP at 2‐ and 3‐mM concentrations significantly (p < 0.05) induced erythrocyte lysis by 37.5% and 31.4%, respectively. The addition of MEVA, however, reduced t‐BHP–induced erythrocyte lysis significantly (p < 0.05) by 39.3%, 48.4%, 67.3% and 73.4% at 25, 50, 100 and 150 µg ml–1 concentrations, respectively. MEVA likewise protected against t‐BHP–induced lipid peroxidation significantly (p < 0.05) at 100 and 150 µg ml–1 by the fourth hour and non‐significantly (p > 0.05) at all concentrations by the sixth hour. The reduced glutathione level was, however, increased with the administration of t‐BHP, while a delayed addition of MEVA had no protective effect on the t‐BHP–induced cell lysis. These findings therefore suggest that MEVA may have protective antioxidant properties, making it suitable for incorporation into food and drug products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   

11.
We report the potent and selective cytotoxicity of the crude aqueous leaf extract from the medicinal plant, Pithecellobium dulce toward the human breast cancer cells (MCF‐7), but not the normal cells (MCF‐10A). The cytotoxicity was found to be dose and time dependent, as 300 µg/mL of the extract decreased the cell viability to 50% (IC50) in 48 h. The induction of apoptosis in the breast cancer cells after treatment was confirmed by significant percentage (24.7%), of early apoptotic cells (AnnexinV +Propidium Iodide_) in treated cells as compared to control cells (3.5%). We observed a significant upregulation in the mRNA expression of various pro‐apoptotic gene such as Bax (21.1 folds), p21(14.4 folds), p53 (11.7 folds), TNF (10.2 folds) and fas (6.3 folds) after treatment as compared to untreated cells. On the other hand, the relative mRNA expression of anti‐apoptotic genes such as Bcl‐2, NF‐KB and Cdk was reduced. The selective upregulation of pro‐apoptotic gene and down regulation of specific anti‐apoptotic genes could be the inducing factor for apoptotic cell death in MCF‐7 cells after treatment with the herbal extract. We believe that our findings provide a foundation for further studies on this formulation as a potential therapeutic candidate for breast cancer. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:756–766, 2016  相似文献   

12.
To investigate the pharmacological mechanism of the traditional Chinese medicine, Pulsatilla decoction (PD), the levels of nitric oxide (NO), endothelin‐1 (ET‐1), tumor necrosis factor‐α (TNF‐α), and interleukin‐1α (IL‐1α) secreted by cultured rat intestinal microvascular endothelial cells (RIMECs) were determined after treatment with PD and its seven active ingredients, namely anemoside B4, anemonin, berberine, jatrorrhizine, palmatine, aesculin, and esculetin. RIMECs were challenged with lipopolysaccharide (LPS) at 1 µg ml?1 for 3 h and then treated with PD at 1, 5, and 10 mg ml?1 and its seven ingredients at 1, 5, and 10 µg ml?1 for 21 h, respectively. The results revealed that PD, anemonin, berberine, and esculetin inhibited the production of NO; PD, anemonin, and esculetin inhibited the secretion of ET‐1; PD, anemoside B4, berberine, jatrorrhizine, and aesculin downregulated TNF‐α expression; PD, anemoside B4, berberine, and palmatine decreased the content of IL‐1α. It showed that PD and its active ingredients could significantly inhibit the secretion of NO, ET‐1, TNF‐α, and IL‐1α in LPS‐induced RIMECs and suggested they would reduce inflammatory response via these cytokines. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this study was to evaluate the impact that 6‐O‐(3″, 4″‐di‐Otrans‐cinnamoyl)‐α‐ l ‐rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT‐29, and MCF‐7 cells. Dicinn induced cell‐cycle arrest at the G0/G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time‐dependent ROS generating effects in tumor cells (1‐24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF‐10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.  相似文献   

14.
Control of the rootknot nematode meloidogyne javanica by Bacillus cereus   总被引:1,自引:0,他引:1  
Exposure of Meloidogyne javanica second‐stage juveniles to the bacterium Bacillus cereus in soil inhibited the penetration of the juvenile nematodes into tomato roots. Culture filtrate of the bacterium grown on nutrient broth and tryptic soy broth revealed nematocidal activity on M. javanica juveniles and eggs. Loss of the nematocidal activity of the media by lowering pH, boiling or dialysis raised the possibility that the active ingredient in the culture filtrate was ammonia, released during the breakdown process of peptides in the media by bacterial activity. Free ammonia (NH3) concentrations in the nutrient broth and tryptic soy broth culture filtrates measured after 48 h were 140 and 190 µg ml?1 respectively. Exposure of second‐stage juveniles to 9.3 µg ml?1 ammonia for 40 h in vitro was lethal to 95% of the nematode population. In a nitrate medium, nitrite accumulated up to 250 µg ml?1 during the growth of the bacterium, and its culture filtrate revealed nematocidal activity. The nematocidal activity of the bacterium increased when the bacterium was applied with various proteinaceous supplements to soil. Soil treated with the bacteria and peptone showed an earlier nematocidal activity than either the bacteria or peptone applied alone, and also had a higher level of ammonia than the individual treatments. However, the level of ammonia was lower than the lethal level for second‐stage juveniles recorded in vitro. The nematocidal activity exhibited by the bacterium‐proteinaceous amendment combination is not fully understood; the ammonia released during protein degradation by the bacterium may contribute significantly to the recorded nematocidal activity.  相似文献   

15.
Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml−1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml−1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5–10 µg ml−1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.  相似文献   

16.
The aim of this study was to investigate the effect of garlic constituent diallyl trisulfide (DATS) on the cell‐death signaling pathway in a human breast cell line (MDA‐MB‐231). We observed that DATS (10–100 µM) treatment resulted in dose‐ and time‐dependent cytotoxicity. Treatment of MDA‐MB‐231 cells with a cytotoxicity inducing concentration of DATS (50–80 µM) resulted in an increase in the intracellular level of reactive oxygen species (ROS). Data from assay with MitoSOXTM Red reagent suggest that mitochondria are the main source of ROS generation during DATS treatment. DATS‐induced oxidative stress was detected through glutaredoxin (GRX), a redox‐sensing molecule, and subsequently GRX was dissociated from apoptosis signal‐regulating kinase 1 (ASK1). Dissociation of GRX from ASK1 resulted in the activation of ASK1. ASK1 activated a downstream signal transduction JNK (c‐Jun N‐terminal kinase)‐Bim pathway. SP600125, a JNK inhibitor, inhibited DATS‐induced Bim phosphorylation and protected cells from DATS‐induced cytotoxicity. Our results indicate that the cytotoxicity caused by DATS is mediated by the generation of ROS and subsequent activation of the ASK1‐JNK‐Bim signal transduction pathway in human breast carcinoma MDA‐MB‐231 cells. J. Cell. Biochem. 112: 118–127, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The present study reports the synthesis of a novel compound with the formula [Ru2(aGLA)4Cl] according to elemental analyses data, referred to as Ru2GLA. The electronic spectra of Ru2GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru2GLA was synthesized with the aim of combining and possibly improving the anti‐tumour properties of the two active components ruthenium and γ‐linolenic acid (GLA). The properties of Ru2GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru2GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru2GLA enters the cells and ICP‐AES elemental analysis found an increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub‐G1 apoptotic cell population was increased by Ru2GLA (22 ± 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru2GLA (44 ± 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 ± 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru2GLA exposed cells. The EC50 for Ru2GLA decreased with increasing time of exposure from 285 µM at 24 h, 211 µM at 48 h to 81 µM at 72 h. In conclusion, Ru2GLA is a novel drug with antiproliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The present study demonstrates that Icariside II (10, 20, and 40 µM) reduced Leydig cell testosterone production and cell viability in a concentration‐ and time‐dependent manner. Hoechst 33342/propidium iodide staining indicated that no morphological changes in Leydig cell nuclear chromatin occurred, caspase‐3 expression also showed no significant change, but cell death was caused by the 10‐µM Icariside II treatment. Furthermore, a significant reduction in NAD+ levels was observed following Icariside II exposure (10, 20, and 40 µM). Cell death was avoided when Icariside II treated cells were incubated with extracellular NAD+ (5 and 10 mM). Moreover, the addition of NAD+ (5 and 10 mM) could restore ATP production and prevent cell death. The results suggest that Icariside II can reduce testosterone production by inducing necrosis, but not apoptosis, in rat Leydig cells. This mechanism may also account for the Icariside II induced depletion of NAD+ and ATP levels. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:243‐250, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21481  相似文献   

19.
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux ‘signatures’ during these stress conditions are poorly characterized. We investigated the kinetics of K+, Ca2+ and H+ ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non‐invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K+ efflux was observed following acute ER stress with peak K+ efflux being ?30·6 and ?138·7 nmolm?2 s?1 for 10 and 50 µg ml?1, respectively (p < 0·01). TM‐dependent Ca2+ uptake was more prolonged with peak values of 0·85 and 2·68 nmol m?2 s?1 for 10 and 50 µg ml?1 TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K+ efflux and Ca2+ uptake. While K+ changes were significantly higher at each time point tested, Ca2+ uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K+ efflux and Ca2+ uptake. Functional assays to investigate the effect of inhibiting K+ efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K+, Ca2+ and H+ ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Candida biofilms are tolerant to conventional antifungal therapeutics and the host immune system. The transition of yeast cells to hyphae is considered a key step in C. albicans biofilm development, and this transition is inhibited by the quorum-sensing molecule farnesol. We hypothesized that fatty acids mimicking farnesol might influence hyphal and biofilm formation by C. albicans. Among 31 saturated and unsaturated fatty acids, six medium-chain saturated fatty acids, that is, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid and lauric acid, effectively inhibited C. albicans biofilm formation by more than 75% at 2 µg ml−1 with MICs in the range 100–200 µg ml−1. These six fatty acids at 2 µg ml−1 and farnesol at 100 µg ml−1 inhibited hyphal growth and cell aggregation. The addition of fatty acids to C. albicans cultures decreased the productions of farnesol and sterols. Furthermore, down-regulation of several hyphal and biofilm-related genes caused by heptanoic or nonanoic acid closely resembled the changes caused by farnesol. In addition, nonanoic acid, the most effective compound diminished C. albicans virulence in a Caenorhabditis elegans model. Our results suggest that medium-chain fatty acids inhibit more effectively hyphal growth and biofilm formation than farnesol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号