首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascorbyl fatty acid esters are commercially interesting fat-soluble antioxidants. In this work, enzymatic synthesis of ascorbyl esters from less expensive and readily available plant oils, and their anti-oxidative activities are described. Among the immobilized lipases tested, Candida antarctica lipase B was the best for the synthesis of plant oil-based ascorbyl esters. The enzyme showed much better catalytic performances in the binary mixtures of biomass-based 2-methyltetrahydrofuran (MeTHF) and t-butanol than the previously preferred t-butanol. The conversions of 70–73% were obtained under the optimal reaction conditions after 24?h, with the unsaturated fatty acid esters (oleate and linoleate, 80–90%) as the major products. The immobilized lipase kept the relative activity of 80% after reuse for 6 batches in MeTHF-containing system. Besides, anti-oxidative activities of plant oil-based ascorbyl esters and ascorbic acid were comparable, which could remove α,α-diphenyl-β-picrylhydrazyl (DPPH) free radical of >87%.  相似文献   

2.
A comparative study was made of immobilized Burkholderia cepacia lipase (PSL-C)-catalyzed acylation of lily polysaccharide (LP) with vinyl acetate in organic solvents, ionic liquids (ILs) and IL-containing systems. The degree of substitution (DS) of the modified LP was used to evaluate the extent of acylation and thus enzymatic activity. In this manner, an eco-friendly solvent, 2-methyltetrahydrofuran (MeTHF), was found to be the most suitable organic reaction medium. However, compared to MeTHF, enhanced enzyme activity was observed when 1-butyl-3-methylimidazolium tetrafluorobrate ([C4MIm][BF4]) was used as the solvent. To further enhance the DS of the modified LP product, co-solvent mixtures of [C4MIm][BF4] and MeTHF were investigated. Among the various MeTHF–[C4MIm][BF4] systems examined, 20% (v/v) MeTHF–[C4MIm][BF4] produced the highest DS. In this reaction medium, the optimal water activity, reaction temperature and time were 0.33, 55 °C and 18 h, respectively, producing a product DS as high as 0.67. The PSL-C enzyme exhibited a much higher stability in the IL-containing system. Additionally, PSL-C-catalyzed acylation of LP was highly regioselective, causing acylation of only C6OH.  相似文献   

3.
RS‐4‐(4‐hydroxyphenyl)‐2‐butanol (rhododendrol, RD), a skin‐whitening agent, is known to induce leukoderma in some consumers. To explore the mechanism underlying this effect, we previously showed that the oxidation of RD with mushroom or human tyrosinase produces cytotoxic quinone oxidation products and RD–eumelanin exerts a potent pro‐oxidant activity. Cellular antioxidants were oxidized by RD–eumelanin with a concomitant production of H2O2. In this study, we examined whether this pro‐oxidant activity of RD–eumelanin is enhanced by ultraviolet A (UVA) radiation because most RD–induced leukoderma lesions are found in sun‐exposed areas. Exposure to a physiological level of UVA (3.5 mW/cm2) induced a two to fourfold increase in the rates of oxidation of GSH, cysteine, ascorbic acid, and NADH. This oxidation was oxygen‐dependent and was accompanied by the production of H2O2. These results suggest that RD–eumelanin is cytotoxic to melanocytes through its potent pro‐oxidant activity that is enhanced by UVA radiation.  相似文献   

4.
The application of Candida antarctica lipase B in enzyme‐catalyzed synthesis of aromatic‐aliphatic oligoesters is here reported. The aim of the present study is to systematically investigate the most favorable conditions for the enzyme catalyzed synthesis of aromatic‐aliphatic oligomers using commercially available monomers. Reaction conditions and enzyme selectivity for polymerization of various commercially available monomers were considered using different inactivated/activated aromatic monomers combined with linear polyols ranging from C2 to C12. The effect of various reaction solvents in enzymatic polymerization was assessed and toluene allowed to achieve the highest conversions for the reaction of dimethyl isophthalate with 1,4‐butanediol and with 1,10‐decanediol (88 and 87% monomer conversion respectively). Mw as high as 1512 Da was obtained from the reaction of dimethyl isophthalate with 1,10‐decanediol. The obtained oligomers have potential applications as raw materials in personal and home care formulations, for the production of aliphatic‐aromatic block co‐polymers or can be further functionalized with various moieties for a subsequent photo‐ or radical polymerization.  相似文献   

5.
The design of an optimal process is particularly crucial when the reactants deactivate the biocatalyst. The reaction cascades of the chemo‐enzymatic epoxidation where the intermediate peroxy acid is produced by an enzyme are still limited by enzyme inhibition and deactivation by hydrogen peroxide. To avoid additional effects caused by interfaces (aq/org) and to reduce the process limiting deactivation by the substrate hydrogen peroxide, a single‐phase concept was applied in a fed‐batch and a continuous process (stirred tank), without the commonly applied addition of a carrier solvent. The synthesis of peroxyoctanoic acid catalyzed by Candida antarctica lipase B was chosen as the model reaction. Here, the feasibility of this biocatalytic reaction in a single‐phase system was shown for the first time. The work shows the economic superiority of the continuous process compared to the fed‐batch process. Employing the fed‐batch process reaction rates up to 36 mmol h?1 per gramcat, and a maximum yield of 96 % was achieved, but activity dropped quickly. In contrast, continuous operation can maintain long‐term enzyme activity. For the first time, the continuous enzymatic reaction could be performed for 55 h without any loss of activity and with a space‐time yield of 154 mmol L?1 h?1, which is three times higher than in the fed‐batch process. The higher catalytic productivity compared to the fed‐batch process (34 vs. 18 gProd g?1cat) shows the increased enzyme stability in the continuous process.  相似文献   

6.
A mild and efficient method for the conversion of fatty acid methyl esters from lard into ascorbyl esters via lipase-catalyzed transesterification in co-solvent mixture is described. A solvent engineering strategy was firstly applied to improve fatty acid ascorbyl esters production. The co-solvent mixture of 30% t-pentanol:70% isooctane (v/v) was optimal. Response surface methodology (RSM) and central composite design (CCD) were employed to estimate the effects of reaction parameters, such as reaction time (12–36 h), temperature (45–65 °C), enzyme amount (10–20%, w/w, of fat acid methyl esters), and substrate molar ratio of fatty acid methyl esters to ascorbic acid (8:1–12:1) for the synthesis of fatty acid ascorbyl esters in co-solvent mixture. Based on the RSM analysis, the optimal reaction conditions were determined as follows: reaction time 34.32 h, temperature 54.6 °C, enzyme amount 12.5%, substrate molar ratio 10.22:1 and the maximum conversion of fatty acid ascorbyl esters was 69.18%. The method proved to be applicable for the synthesis of ascorbyl esters using Novozym 435 in solvent.  相似文献   

7.
Enzymatic synthesis of palm-based ascorbyl esters   总被引:2,自引:0,他引:2  
The synthesis of palm-based ascorbyl esters through transesterification of ascorbic acid and palm oil in tert-amyl alcohol catalyzed by immobilized lipase is described. Highest conversion (70–75%) was determined after 16 h reaction at 40 °C using lipase (Novozyme 435 from Candida antartica) with an ascorbic acid to palm oil mole ratio of 1:8. The purified product was further characterized by 13C NMR and GC–MS and the mixture of ascorbyl monoesters obtained were identified as ascorbyl monooleate (61%), ascorbyl monopalmitate (30%) and ascorbyl monostearate (9%). The antioxidant activity of palm-based ascorbyl esters was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. The results showed that pure palm-based ascorbyl esters have an antioxidant activity with an IC50 value of 0.1 mg/mL.  相似文献   

8.
The purification and characterization of psychro‐thermoalkalistable protease from psychrotrophic Pseudomonas putida isolate is being reported for the first time. A ~53 kDa protease was purified 21.4‐folds with 57.2% recovery by ultrafiltration and hydrophobic interaction chromatography. Kinetic analyses revealed the Km and Vmax to be 1.169 mg mL?1 and 0.833 mg mL?1 min?1, respectively. The kcat value of 3.05 × 102 s?1 indicated high affinity and catalytic efficiency toward casein. The protease was most active at pH 9.5 and 40°C, with 100% stability in pH and temperature range of 6.0–11.0 and 10–40°C, respectively. Presence of Zn2+ increased the thermostability of protease (at 70°C) by 433%. Ethylene diamine tetra acetic acid (EDTA) and 1,10‐phenanthroline were inhibitory, whereas phenyl methyl sulfonyl fluoride (PMSF), p‐chloro mercuric benzoate (PCMB), and β‐mercaptoethanol were ineffective, revealing the enzyme to be a metalloprotease. Zinc, calcium, iron, nickel, and copper at 1 mM increased the enzyme activity (102–134%). Complete reversion of enzyme inhibition (caused by Ethylene diamine tetra acetic acid [EDTA]) by Zn2+ affirmed this enzyme as zinc‐dependent metalloprotease. At 0.1% concentration, Triton X‐100 and Tween 80 slightly increased, while SDS and H2O2 reduced the protease activity. In the presence of 0.1% commercial detergents, the enzyme was fairly stable (54–81%). In the presence of organic solvent, the protease was remarkably stable exhibiting 72–191% activities. In contrast, savinase exhibited good stability in the presence of hydrophilic solvents, while chymotrypsin showed elevated activities with benzene, toluene, and xylene only. Circular dichroism analysis revealed the protease as a β‐rich protein, having large fraction (~40%) of β‐sheets. Presence of different environmental conditions altered the β‐content, which accordingly affected the protease activity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

9.
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase ( PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t‐butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0‐40% (w/v), extract to t‐butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0‐40% (w/v), crude extract to t‐butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26‐36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1340–1347, 2015  相似文献   

10.
A peptide, N‐Ac‐Phe‐Tyr‐NH2, with angiotensin I‐converting enzyme (ACE) inhibitor activity was synthesized by an α‐chymotrypsin‐catalyzed condensation reaction of N‐acetyl phenylalanine ethyl ester (N‐Ac‐Phe‐OEt) and tyrosinamide (Tyr‐NH2). Three kinds of solvents: a Tris–HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic‐aqueous solvent (Tris‐HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N‐Ac‐Phe‐Tyr‐NH2 could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N‐Ac‐Phe‐Tyr‐NH2, so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

11.
RS‐4‐(4‐Hydroxyphenyl)‐2‐butanol (rhododendrol, RD), a skin‐whitening agent, is known to induce leukoderma in some people. To explore the mechanism underlying this effect, we previously showed that the oxidation of RD with mushroom or human tyrosinase produces cytotoxic quinone oxidation products. We then examined the metabolism of RD in B16F1 melanoma cells in vitro and detected RD‐pheomelanin and RD‐quinone bound to non‐protein and protein thiols. In this study, we examined the changes in glutathione (GSH) and cysteine in B16 cells exposed to RD for up to 24 h. We find that the levels of cysteine, but not those of GSH, decrease during 0.5‐ to 3‐h exposure, due to oxidation to cystine. This pro‐oxidant activity was then examined using synthetic melanins. Indeed, we find that RD‐eumelanin exerts a pro‐oxidant activity as potent as Dopa‐pheomelanin. GSH, cysteine, ascorbic acid, and NADH were oxidized by RD‐eumelanin with a concomitant production of H2O2. We propose that RD‐eumelanin induces cytotoxicity through its potent pro‐oxidant activity.  相似文献   

12.
Gold nanoparticles (AuNPs) exhibit characteristic absorption peaks in the ultraviolet visible region due to their special surface plasmon resonance effect. This characteristic absorption peak would change with the relative colour varying from wine red to orange‐yellow upon sequential addition of ascorbic acid (AA) into the mixture of AuNPs and Ag(I). Similar observations also could be found when the hydrolysis product of sodium l ‐ascorbyl‐2‐phosphate with alkaline phosphatase (ALP) was used as an alternative to AA. Results of structure characterization confirmed that the phenomena were due to the reduction of Ag(I) to Ag(0) on the surface of AuNPs and the formation of core‐shell AuNPs@Ag. Therefore, a colorimetric assay for rapid visual detection of AA and ALP based on redox‐modulated silver deposition on AuNPs has been proposed. Under the optimal experimental conditions, the absorbance variation ΔA522 nm/A370 nm of AuNPs was proportional to the concentration of AA (5–60 μmol/L) and ALP (3–18 U/L) with the corresponding detection limit of 2.44 μmol/L for AA and 0.52 U/L for ALP. The assay showed excellent selectivity towards AA and ALP. Moreover, the assay has been applied to detect AA and ALP activity in real samples with satisfying results.  相似文献   

13.
Rational design and construction of a multifunctional electrocatalyst featuring with high efficiency and low cost is fundamentally important to realize new energy technologies. Herein, a trifunctional electrocatalyst composed of FePx nanoparticles and Fe–N–C moiety supported on the N‐, P‐codoped carbon (NPC) is masterly synthesized by a facile one‐pot pyrolysis of the mixture of tannic acid, ferrous chloride, and sodium hydrogen phosphate. The synergy of each component in the FePx/Fe–N–C/NPC catalyst renders high catalytic activities and excellent durability toward both oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The electrocatalytic performance and practicability of the robust FePx/Fe–N–C/NPC catalyst are further investigated under the practical operation conditions. Particularly, the overall water splitting cell assembled by the FePx/Fe–N–C/NPC catalyst only requires a voltage of 1.58 V to output the benchmark current density of 10 mA cm?2, which is superior to that of IrO2–Pt/C‐based cell. Moreover, the FePx/Fe–N–C/NPC‐based zinc–air batteries deliver high round‐trip efficiency and remarkable cycling stability, much better than that of Pt/C–IrO2 pair‐based batteries. This work offers a new strategy to design and synthesize highly effective multifunctional electrocatalysts using cheaper tannic acid derived carbon as support applied in electrochemical energy devices.  相似文献   

14.
The use of ionic liquids (ILs) as reaction media for enzymatic reactions has increased their potential because they can improve enzyme activity and stability. Kinetic and stability properties of immobilized commercial laccase from Myceliophthora thermophila in the water‐soluble IL 1‐ethyl‐3‐methylimidazolium ethylsulfate ([emim][EtSO4]) have been studied and compared with free laccase. Laccase immobilization was carried out by covalent binding on glyoxyl–agarose beads. The immobilization yield was 100%, and the activity was totally recovered. The Michaelis‐Menten model fitted well to the kinetic data of enzymatic oxidation of a model substrate in the presence of the IL [emim][EtSO4]. When concentration of the IL was augmented, the values of Vmax for free and immobilized laccases showed an increase and slight decrease, respectively. The laccase–glyoxyl–agarose derivative improved the laccase stability in comparison with the free laccase regarding the enzymatic inactivation in [emim][EtSO4]. The stability of both free and immobilized laccase was slightly affected by small amounts of IL (<50%). A high concentration of the IL (75%) produced a large inactivation of free laccase. However, immobilization prevented deactivation beyond 50%. Free and immobilized laccase showed a first‐order thermal inactivation profile between 55 and 70°C in the presence of the IL [emim][EtSO4]. Finally, thermal stability was scarcely affected by the presence of the IL. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:790–796, 2014  相似文献   

15.
The intracellular recycling of ascorbic acid from dehydroascorbic acid by the glutathione–glutathione reductase system has been well‐characterized. We propose that extracellular recycling of ascorbic acid is performed in a similar manner by cysteine‐rich, glutathione‐like regions of the first and second extracellular loops of some aminergic receptors including adrenergic, histaminergic, and dopaminergic receptors. Previous research in our laboratory demonstrated that ascorbic acid binds to these receptors at a site on their first or second extracellular loops, significantly enhancing ligand activity, and apparently recycling hundreds of times their own concentration of ascorbate in an enzymatic fashion. In this study, we have synthesized 25 peptides from the first and second extracellular loops of aminergic and insulin receptors and compared them directly to glutathione for their ability to prevent the oxidation of ascorbate and to regenerate ascorbate from dehydroascorbic acid. Peptide sequences that mimic glutathione in containing a cysteine and a glutamic acid‐like amino acid also mimic glutathione activity in effects and in kinetics. Some (but not all) peptide sequences that contain one or more methionines instead of cysteine can significantly retard the oxidation of ascorbic acid but do not recycle it from dehydroascorbate into ascorbate. Peptides lacking both cysteines and methionines uniformly failed to alter significantly ascorbate or dehydroascorbate oxidation or reduction. We believe that this is the first proof that receptors may carry out both ligand binding and enzymatic activity extracellularly. Our results suggest the existence of a previously unknown extracellular system for recycling ascorbate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Quercetin noncompetitively inhibited the peroxidation of linoleic acid catalyzed by soybean lipoxygenase‐1 (EC 1.13.11.12, Type 1) with an IC50 value of 4.8 μM (1.45 μg/ml). This inhibition is considered to proceed in sequential order, by initially reducing the ferric form of the enzyme to an inactive ferrous form and then, by chelating the iron of the active site of the enzyme. In the pseudoperoxidase assay, quercetin was slowly oxidized by hydroperoxides to a rather stable intermediate, 2‐(3,4‐dihydroxybenzoyl)‐2,4,6‐trihydroxybenzofuran‐3(2H)‐one, and this oxidized intermediate still inhibited the enzymatic oxidation, probably as a chelator. Rutin and kaempferol also exhibited lipoxygenase‐1 inhibitory activity, but to a much lesser extent than quercetin.  相似文献   

17.
Several methods for the quantitative detection of different compounds, e.g., L‐amino acids, sugars or alcohols in liquid media were developed by application of an automatic measuring unit including a fluid chip‐calorimeter FCC‐21. For this purpose, enzymes were immobilized covalently on the inner and outer surface of CPG (controlled porous glass)‐spherules with an outer diameter of 100 μm and filled into a micro flow‐through reaction chamber (VR = 20 μL). The design of the measuring cell allows for easy insertion into the calorimeter device of a stored series of comfortably pre‐fabricated measuring cells. These cells can be filled with different enzyme immobilizates. Different oxidases were used and co‐immobilized with catalase for the improvement of the detection sensitivity. A signal amplification could be achieved up to a factor of 3.5 with this configuration. β‐D‐glucose, ethanol and L‐lysine could be detected in a range of 0.25–1.75 mM using glucose oxidase, alcohol oxidase and lysine oxidase. The group of oxidases in combination with the enzymatic catalysis of the intermediate H2O2 allows the quantitative detection of a large number of analytes. A good measurement and storage stability could be achieved for several weeks by this immobilization method. In addition to enzyme‐based detection reactions, it was shown that living microorganisms can be immobilized in the reaction chamber. Thus, the system can be used as a whole‐cell biosensor. The quantitative detection of phenol in the range of 10–100 μM could be performed using the actinomycete Rhodococcus sp. immobilized on glass beads by means of embedding into polymers.  相似文献   

18.
The enzymatic synthesis of N‐acetyl‐lactosamine (LacNAc) by the transgalactosylation of N‐acetyl‐D ‐glucosamine (GlcNAc), catalyzed by the β‐galactosidase from Bacillus circulans (BcβGal), was studied in hydro‐organic media, starting from o‐nitrophenyl‐β‐D ‐galactopyranoside (oNPG) as a galactosyl donor. Thermal stability and synthesis activity of BcβGal were shown to depend on the organic solvent polarity, characterized by its Log P value. BcβGal was thus most stable in 10% (v/v) t‐BuOH, an organic solvent found to have a stabilizing and/or weakly denaturing property, which was confirmed for high t‐BuOH concentrations. In the same manner, the optimal synthesis yield increased as the Log P value of the organic solvent increased. The best results were obtained for reactions carried out in 10% (v/v) pyridine or 2‐methyl‐2‐butanol, which gave 47% GlcNAc transgalactosylation yield based on starting oNPG, of which 23% (11 mM; 4.3 g/L) consisted in LacNAc synthesis. Furthermore, it was also established that both the GlcNAc transgalactosylation yield and the enzyme regioselectivity depended on the percentage of organic solvent used, the optimal percentage varying from 10 to 40% (v/v), depending on the solvent. This phenomenon was found to correlate mainly with the thermodynamic activity of water (aw) in the aqueous organic solvent mixture, which was found to be optimal when close to 0.96, whatever the organic solvent used. Finally, this study highlighted the fact that the regioselectivity of BcβGal for 1‐4 linkage formation could be advantageously managed by controlling the aw parameter. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
Coreopsis tinctoria capitula (CTC) of the Compositae family has been used traditionally to treat various diseases in China, particularly type 2 diabetes mellitus (T2DM). This study evaluated the anti‐lipid peroxidation, α‐glucosidase and α‐amylase inhibitory effects of CTC extracts, and analyzed its chemical composition by HPLC. Moreover, the antioxidant activity and protection effects of CTC extracts were investigated on high‐fat/high‐sugar and streptozotocin‐induced T2DM mice. In vitro study, the ethyl acetate extract (EAE) and butanol extract (BE) of CTC exhibited anti‐lipid peroxidation (IC50: BHA>BE or EAE>ascorbic acid, p<0.05) and α‐glucosidase inhibitory activity (IC50: BE>EAE, p<0.05). In vivo, the BE at the dose of 600 mg/kg was intragastrically given to T2DM mice, which exhibited a certain extent of repair and improvement of the levels of CAT, GSH, GSH‐PX, SOD, as well as plasma biomarkers, compared with those in the model group (p<0.05). These results demonstrated that CTC extracts have a positive effect to treat T2DM and it can be used for the treatment of T2DM in the future.  相似文献   

20.
A study on a chemoenzymatic synthesis of model α-hydroxyamide was performed. Special attention was paid to the optimization of the enzymatic process, both on the selection of enzyme and cosolvent. An intriguing influence of cosolvent on the enantioselectivity of Wheat Germ Lipase and Amano PS Lipase catalyzed hydrolysis was observed, as the results obtained proved that enzyme's enantioselectivity is directly correlated with cosolvent's hydrophobicity. In the best example (Wheat Germ lipase, Et2O used as a cosolvent), the reaction proceeded with E = 55, and the target compound was obtained in 33% yield with 92.7%ee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号