首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new oleanane‐type saponins: β‐d ‐xylopyranosyl‐(1 → 4)‐6‐deoxy‐α‐l ‐mannopyranosyl‐(1 → 2)‐1‐O‐{(3β)‐28‐oxo‐3‐[(2‐Oβ‐d ‐xylopyranosyl‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐yl}‐β‐d ‐glucopyranose ( 1 ) and 1‐O‐[(3β)‐28‐oxo‐3‐{[β‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐arabinopyranosyl‐(1 → 6)‐2‐acetamido‐2‐deoxy‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐yl]β‐d ‐glucopyranose ( 2 ), along with two known saponins: (3β)‐3‐[(β‐d ‐Glucopyranosyl‐(1 → 2)‐β‐d ‐glucopyranosyl)oxy]olean‐12‐en‐28‐oic acid ( 3 ) and (3β)‐3‐{[α‐l ‐arabinopyranosyl‐(1 → 6)‐[β‐d ‐glucopyranosyl‐(1 → 2)]‐β‐d ‐glucopyranosyl]oxy}olean‐12‐en‐28‐oic acid ( 4 ) were isolated from the acetone‐insoluble fraction obtained from the 80% aqueous MeOH extract of Albizia anthelmintica Brongn . leaves. Their structures were identified using different NMR experiments including: 1H‐ and 13C‐NMR, HSQC, HMBC and 1H,1H‐COSY, together with HR‐ESI‐MS/MS, as well as by acid hydrolysis. The four isolated saponins and the fractions of the extract exhibited cytotoxic activity against HepG‐2 and HCT‐116 cell lines. Compound 2 showed the most potent cytotoxic activity among the other tested compounds against the HepG2 cell line with an IC50 value of 3.60μm . Whereas, compound 1 showed the most potent cytotoxic effect with an IC50 value of 4.75μm on HCT‐116 cells.  相似文献   

2.
Three new oleanane‐type glycosides, 1 – 3 , were isolated from the whole plant of Tremastelma palaestinum (L.) Janchen, along with eight known triterpene glycosides. The structures of the new compounds were established as 3‐O‐[β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→3)‐β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→2)‐α‐l‐ arabinopyranosyl]hederagenin ( 1 ), 3‐O‐[β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→3)‐β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→2)‐α‐l‐ arabinopyranosyl]hederagenin 28‐Oβ‐d‐ glucopyranosyl‐(1→6)‐β‐d‐ glucopyranosyl ester ( 2 ), and 3‐O‐[α‐l‐ rhamnopyranosyl‐(1→3)‐β‐d‐ glucopyranosyl‐(1→3)‐α‐l‐ rhamnopyranosyl‐(1→2)‐α‐l‐ arabinopyranosyl]oleanolic acid 28‐Oβ‐d‐ glucopyranosyl‐(1→6)‐β‐d‐ glucopyranosyl ester ( 3 ) by using 1D‐ and 2D‐NMR techniques and mass spectrometry. This is the first report on the phytochemical investigation of a species belonging to Tremastelma genus.  相似文献   

3.
From the whole plant of Astragalus halicacabus (Sect. Halicacabus), a new cycloartane‐type glycoside, (20R,24S)‐3‐O‐[α‐L ‐arabinopyranosyl‐(1→2)‐β‐D ‐xylopyranosyl]‐20,24‐epoxy‐16‐Oβ‐D ‐glucopyranosyl‐3β,6α,16β,25‐tetrahydroxycycloartane, and a new glycoside, 3‐O‐[β‐D ‐apiofuranosyl‐(1→2)‐β‐D ‐glucopyranosyl]maltol were isolated together with seven known cycloartane‐type glycosides, i.e., cyclocanthoside D, askendosides D, F, and G, cyclosieversioside G, cyclostipuloside A, elongatoside, and a known maltol glucoside, 3‐Oβ‐D ‐glucopyranosylmaltol. The structures were elucidated by means of high‐resolution mass spectrometry, and extensive 1D‐ and 2D‐NMR spectroscopic analysis. This is the first phytochemical work on A. halicacabus, and a maltol glycoside was encountered for the first time in the Leguminosae family.  相似文献   

4.
Saponins are amphiphilic glycoconjugates which give soap‐like foams in H2O. A new triterpenoid saponin, simenoside A ( 1 ), based on gypsogenin aglycone, and the known saponin 2 were isolated from Gypsophila simonii Hub.‐Mor. The structure of the new saponin was elucidated as 3‐Oβ‐D ‐galactopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucuronopyranosylgypsogenin 28‐Oβ‐D ‐glucopyranosyl‐(1→3)[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐xylopyranosyl‐(1→4)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐fucopyranosyl ester on the basis of extensive spectral analyses and chemical evidence. Saponins 1 and 2 were isolated from G. simonii for the first time.  相似文献   

5.
Three new triterpene glucosides, named congmuyenosides C–E ( 1 – 3 , resp.), along with four known ones, were isolated from an EtOH extract of Aralia elata (Miq .) Seem . leaves. The structures of the new compounds were identified as 3‐O‐{β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl}caulophyllogenin ( 1 ), 3‐O‐{β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl}hederagenin 28‐Oβ‐D ‐glucopyranosyl ester ( 2 ), 3‐O‐{β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)‐[β‐D ‐glucopyranosyl‐(1→2)]‐β‐D ‐glucopyranosyl}echinocystic acid 28‐Oβ‐D ‐glucopyranosyl ester ( 3 ) on the basis of spectral analyses, including MS, 1H‐NMR, 13C‐NMR, DEPT, HSQC, HMBC, NOESY, and HSQC‐TOCSY experiments. All isolates obtained were evaluated for their cytotoxic activities against three human tumor cell lines (HepG2, SKOV3, and A549). Compound 3 showed significant cytotoxicity against A549 cell line (IC50 9.9±1.5 μM ).  相似文献   

6.
To investigate saponins from the roots of Pulsatilla cernua (Thunb.) Bercht. et Opiz., two new compounds together with five known trlterpenold saponins were isolated. The structures of the two new trlterpenoid saponins, named cernuasides A and B, were elucidated as 3-O-[β-D-xylopyranosyl(1-)2)]-[α-L-rhamnopyranosyl(1-)4)]-α-L- arablnopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 1) and 3-O-[α-L-arabinopyranosyl(1→)3)]- [α-L-rhamnopyranosyl (1→)2)]-α-L-arabinopyranosyl hederagenin 28-O-β-D-glucopyranosyl ester (compound 2) by 1D, 2D-NMR techniques, ESIMS analysis, as well as chemical methods.  相似文献   

7.
Gentiana rhodantha Franch. ex Hemsl. (Gentianaceae), an annual herb widely distributed in the southwest of China, has been medicinally used for the treatment of inflammation, cholecystitis, and tuberculosis by the local people of its growing areas. Chemical investigation on the whole plants led to the identification of eight new phenolic compounds, rhodanthenones A–D ( 1 – 4 , resp.), apigenin 7‐O‐glucopyranosyl‐(1→3)‐glucopyranosyl‐(1→3)‐glucopyranoside ( 5 ), 1,2‐dihydroxy‐4‐methoxybenzene 1‐Oα‐L ‐rhamnopyranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 6 ), 1,2‐dihydroxy‐4,6‐dimethoxybenzene 1‐Oα‐L ‐rhamnopyranosyl‐(1→6)‐β‐D ‐glucopyranoside ( 7 ), and methyl 2‐Oβ‐D ‐glucopyranosyl‐2,4,6‐trihydroxybenzoate ( 8 ), together with eleven known compounds, 9 – 19 . Their structures were determined on the basis of detailed spectroscopic analyses and chemical methods. Acetylcholinesterase (AChE) inhibition and cytotoxicity tests against five human cancer cell lines showed that only rhodanthenone D ( 4 ) and mangiferin ( 12 ) exhibited 18.4 and 13.4% of AChE inhibitory effects at a concentration of 10−4 M , respectively, while compounds 1 – 5 and the known xanthones lancerin ( 11 ), mangiferin ( 12 ), and neomangiferin ( 13 ) displayed no cytotoxicity at a concentration of 40 μM .  相似文献   

8.
Six new triterpene saponins, ilexasprellanosides A–F ( 1 – 6 , resp.), together with eleven known compounds were isolated from the roots of Ilex asprella. The new saponins were characterized as ursa‐12,18‐dien‐28‐oic acid 3‐Oβ‐D ‐xylopyranoside ( 1 ), 19α‐hydroxyursolic acid 3‐Oβ‐D ‐(2′‐O‐acetylxylopyranoside) ( 2 ), 19α‐hydroxyursolic acid 3‐Oβ‐D ‐glucuronopyranoside ( 3 ), 3β,19α‐dihydroxyolean‐12‐en‐23,28‐dioic acid 28‐Oβ‐D ‐glucopyranoside ( 4 ), 19α‐hydroxyoleanolic acid 3‐O‐β‐D ‐(2′‐O‐acetylxylopyranoside) ( 5 ), 19α‐hydroxyoleanolic acid 3‐Oβ‐D ‐glucuronopyranoside ( 6 ). The structures of the new compounds were elucidated by analysis of their spectroscopic data and chemical degradation. Compounds 2, 4 , oleanolic acid 3‐Oβ‐D ‐glucuronopyranoside, 3‐β‐acetoxy‐28‐hydroxyurs‐12‐ene, and pomolic acid showed significant cytotoxic activities against human tumor cell line A549 (IC50 values of 1.87, 2.51, 1.41, 3.24, and 5.63 μM , resp.).  相似文献   

9.
Two New Triterpenoid Saponins from Akebia quinata (Thunb.) Decne.   总被引:1,自引:0,他引:1  
Two new triterpenoid saponins, hederagenin 3-O-α-L-arabinopyranosyl-(1→〉2)-α-L-arabinopyranoside named akeboside La (compound 1), oleanolic acid 3-O-α-L-arabinopyranosyl-(1→〉2)-β-D-glucopyranoside named akeboside Lb (compound 2), along with five known saponins, oleanolic acid 3-O-α-L-rhamnopyranosyl-(1→〉2)-α-L- arabinopyranoside (compound 3), hederagenin 3-O-α-L-rhamnopyranosyl-(1→〉2)-α-L-arabinopyranoside (compound 4), oleanolic acid 3-O-β-D-xylopyranosyl-(1→〉3)-α-L-rhamnopyranosyl-(1→〉2)-α-L-arabinopyranoside (compound 5), 3-O-α-L-rhamnopyranosyl-(1→〉2)-α-L-arabinopyranosyl oleanolic acid 28-O-α-L-rhamnopyranosyl-(1→〉4)-α-D- glucopyranosyl-(1→〉6)-β-D-glucopyranoside (compound 6), 3-O-α-L-rhamnopyranosyl-(1→〉2)-α-L-arabinopyranosyl hederagenin 28-α-L-rhamnopyranosyl-(1→〉4)-β-D-glucopyranosyl-(1→〉6)-β-D-glucopyranoside (compound 7) were isolated from the n-butanol part of the 80% ethanol extracts of the dried stems of Akebia quinata (Thunb.) Decne. Compound 5 was isolated from plants of genus Akebia for the first time. The structures were elucidated on the basis of physicochemical properties and spectral data.  相似文献   

10.
Four new steroidal glycosides, protolinckiosides A – D ( 1 – 4 , resp.), were isolated along with four previously known glycosides, 5 – 8 , from the MeOH/EtOH extract of the starfish Protoreaster lincki. The structures of 1 – 4 were elucidated by extensive NMR and ESI‐MS techniques as (3β,4β,5α,6β,7α,15α,16β,25S)‐4,6,7,8,15,16,26‐heptahydroxycholestan‐3‐yl 2‐O‐methyl‐β‐d ‐xylopyranoside ( 1 ), (3β,5α,6β,15α,24S)‐3,5,6,8,15‐pentahydroxycholestan‐24‐yl α‐l ‐arabinofuranoside ( 2 ), sodium (3β,6β,15α,16β,24R)‐29‐(β‐d ‐galactofuranosyloxy)‐6,8,16‐trihydroxy‐3‐[(2‐O‐methyl‐β‐d ‐xylopyranosyl)oxy]stigmast‐4‐en‐15‐yl sulfate ( 3 ), and sodium (3β,6β,15α,16β,22E,24R)‐28‐(β‐d ‐galactofuranosyloxy)‐6,8,16‐trihydroxy‐3‐[(2‐O‐methyl‐β‐d ‐xylopyranosyl)oxy]ergosta‐4,22‐dien‐15‐yl sulfate ( 4 ). The unsubstituted β‐d ‐galactofuranose residue at C(28) or C(29) of the side chains was found in starfish steroidal glycosides for the first time. Compounds 1 – 4 significantly decreased the intracellular reactive oxygen species (ROS) content in RAW 264.7 murine macrophages at induction by proinflammatory endotoxic lipopolysaccharide (LPS) from E. coli.  相似文献   

11.
The defatted fractions of the Faramea hyacinthina and Ftruncata (Rubiaceae) leaf MeOH extracts showed in vitro non‐cytotoxic and anti‐dengue virus serotype 2 (DENV2) activity in human hepatocarcinoma cell lineage (HepG2). Submitting these fractions to the developed RP‐SPE method allowed isolating the antiviral flavanone (2S)‐isosakuranetin‐7‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 1 ) from both species and yielded less active sub‐fractions. The new diastereoisomeric epimer pair (2S) + (2R) of 5,3′,5′‐trihydroxyflavanone‐7‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 2a / 2b ) from Fhyacinthina; the known narigenin‐7‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 3 ) from both species; rutin ( 4 ) and quercetin‐4′‐β‐d ‐O‐glucopyranosyl‐3‐O‐rutinoside ( 5 ) from Fhyacinthina, and kaempferol‐3‐O‐rutinoside ( 6 ), erythroxyloside A ( 7 ) and asperuloside ( 8 ) from Ftruncata have been isolated from these sub‐fractions. Compounds 4  –  8 are reported for the first time in Faramea spp.  相似文献   

12.
Three new steroid saponins (3β,25R)‐spirost‐5‐en‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→4)‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 1 ), (3β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurost‐5‐en‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐[6‐deoxy‐α‐L ‐mannopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 3 ), and (3β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐hydroxyfurost‐5‐en‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→4)‐6‐deoxy‐α‐L ‐mannopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 5 ), as well as the new pregnane glycoside (3β,16β)‐3‐{[6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐[6‐deoxy‐α‐L ‐mannopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl]oxy}‐20‐oxopregn‐5‐en‐16‐yl (4R)‐5‐(β‐D ‐glucopyranosyloxy)‐4‐methylpentanoate ( 6 ), were isolated from the rhizomes of Tacca integrifolia together with two known (25R) configurated steroid saponins (3β,25R)‐spirost‐5‐en‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐[6‐deoxy‐α‐L ‐mannopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 2 ) and (3β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐22‐methoxyfurost‐5‐en‐3‐yl 6‐deoxy‐α‐L ‐mannopyranosyl‐(1→2)‐[6‐deoxy‐α‐L ‐mannopyranosyl‐(1→3)]‐β‐D ‐glucopyranoside ( 4 ). The cytotoxic activity of the isolated compounds was evaluated in HeLa cells and showed the highest cytotoxicity value for compound 2 with an IC50 of 1.2±0.4 μM . Intriguingly, while compounds 1 – 5 exhibited similar cytotoxic properties between 1.2±0.4 ( 2 ) and 4.0±0.6 μM ( 5 ), only compound 2 showed a significant microtubule‐stabilizing activity in vitro.  相似文献   

13.
The biotransformation of the major saponins in Panax notoginseng, including the ginsenosides Rg1, Rh1, Rb1, and Re, by endophytes isolated from P. notoginseng was studied. One hundred and thirty‐six endophytes were isolated and screened for their biotransformational abilities. The results showed that five of the tested endophytes were able to transform these saponins. These five strains were identified based on their ITS or 16S rDNA sequences, which revealed that they belonged to the genera Fusarium, Nodulisporium, Brevundimonas, and Bacillus genera. Ten transformed products were isolated and identified, including a new compound 6‐O‐[α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]‐20‐Oβ‐D ‐glucopyranosyldammarane‐3,6,12,20,24,25‐hexaol ( 3 ), and nine known compounds, compound K ( 1 ), ginsenoside F2 ( 2 ), vinaginsenoside R13 ( 4 ), vinaginsenoside R22 ( 5 ), pseudo‐ginsenoside RT4 ( 6 ), (20S)‐protopanaxatriol ( 7 ), ginsenoside Rg1 ( 8 ), vinaginsenoside R15 ( 9 ), and (20S)‐3‐Oβ‐D ‐glucopyranosyl‐6‐Oβ‐D ‐glucopyranosylprotopanaxatriol ( 10 ). This is the first study on the biotransformation of chemical components in P. notoginseng by endophytes isolated from the same plant.  相似文献   

14.
Five chromone glycosides were isolated from the water‐soluble portions of 70% EtOH extract of the roots of Saposhnikovia divaricata, including two new chromone glycosides 1 and 2 . The structures of the chromone glycosides were identified as (3′S)‐3′‐O‐β‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranosylhamaudol ( 1 ), (2′S)‐4′‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranosylvisamminol ( 2 ), 3′‐O‐glucopyranosylhamaudol ( 3 ), 4′‐O‐β‐d ‐glucopyranosylvisamminol ( 4 ), and 4′‐O‐β‐d ‐glucopyranosyl‐5‐O‐methylvisamminol ( 5 ) on the basis of extensive spectroscopic methods, and the absolute configurations of the new compounds were elucidated by the electronic circular dichroism (ECD) calculation and acid hydrolysis. The cytotoxic activities of the glycosides 1 – 5 against three human cancer cell lines (PC‐3, SK‐OV‐3, and H460) were evaluated. The result showed that compounds 1 – 5 had weak cytotoxic activities against the human cancer cell lines with IC50 values in the range of 48.54 ± 0.80 – 94.25 ± 1.45 μm .  相似文献   

15.
Two new oleanane-type triterpene glycosides, 3˗O˗β˗D˗glucopyranosyl˗28˗O˗[β˗D˗glucopyranosyl˗(1→2)˗β˗D˗xylopyranosyl˗(1→6)˗β˗D˗glucopyranosyl]medicagenic acid (1) and 3˗O˗β˗D˗glucopyranosyl˗28˗O˗[β˗D˗glucopyranosyl˗(1→6)˗β˗D˗glucopyranosyl˗(1→2)˗ β˗D˗xylopyranosyl]oleanolic acid (2), named capitatosides A and B respectively, were isolated from the butanol extract of Paronychia capitata (L.) Lam., along with seven known compounds. The structures of the isolated compounds were established by spectroscopic methods, mainly HRMS, 1D and 2D NMR (1H, 13C, COSY, HSQC, HMBC and NOESY) techniques, whereas those of the known compounds were identified by spectral comparison with reported literature data.  相似文献   

16.
Three new lignans ( 1 – 3 ), together with four new thymoquinol glycosides ( 4 – 7 ), were isolated from 70%‐EtOH extract of the rattan stems of Schisandra chinensis. The structures of 1 – 7 were elucidated by detailed spectroscopic analyses, and these new compounds were identified as pinobatol‐9‐Oβ‐d ‐glucopyranoside ( 1 ), 1,2,13,14‐tetramethoxydibenzocyclooctadiene 3,12‐Oβ‐d ‐diglucopyranoside ( 2 ), 3,7‐dihydroxy‐1,2,13,14‐tetramethoxydibenzocyclooctadiene 12‐Oβ‐d ‐glucopyranoside ( 3 ), thymoquinol 2‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 4 ), thymoquinol 2‐Oα‐d ‐arabinofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 5 ), thymoquinol 5‐Oβ‐d ‐apiofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 6 ), and thymoquinol 5‐Oα‐d ‐arabinofuranosyl‐(1→6)‐β‐d ‐glucopyranoside ( 7 ). The neuroprotective activity of 1 – 7 was evaluated on PC12 cells with neurotoxicity induced by amyloid‐beta 1 – 42 (Aβ1 – 42). Compounds 2 and 3 showed protecting activity against Aβ‐induced toxicity in PC12 cells.  相似文献   

17.
Chemical investigation of the glandular trichome exudate of Erodium pelargoniflorum (Geraniaceae) led to the isolation of two dodecyl disaccharide derivatives, named pelargoside A1 and pelargoside B1 ( 1 and 2 , resp.). The structures of 1 and 2 were determined as dodecyl 4‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐acetyl‐β‐D ‐fucopyranoside and dodecyl 3,4‐di‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐acetyl‐β‐D ‐fucopyranoside, respectively, by spectroscopic studies, including 2D‐NMR, and chemical transformations. In addition, undecyl, tridecyl, and tetradecyl homologs of 1 and 2 , named pelargosides A2–A4 and pelargosides B2–B4, were also characterized as minor constituents of the exudate.  相似文献   

18.
Two novel flavanone glycosides, homoeriodictyol 7‐O‐β‐D ‐[6‐(3‐hydroxybutanoyl)glucopyranoside] (viscumneoside IX; 1 ) and homoeriodictyol 7‐Oβ‐D ‐[6‐(3‐hydroxybutanoyl)glucopyranosyl](1→2)‐β‐D ‐glucopyranoside (viscumneoside X; 2 ), together with four known flavanoids, 2‐homoeriodictyol 7‐Oβ‐D ‐glucopyranoside ( 3 ), viscumneoside I ( 4 ), viscumneoside III ( 5 ), and 4′,5‐dihydroxy‐3′‐methoxy‐7‐(2‐Oα‐L ‐rhamnopyranosyl‐β‐D ‐glucopyranosyloxy)flavanone ( 6 ) were isolated from stems and leaves of Viscum coloratum. Their structures were elucidated on the basis of their NMR spectra, HR‐FAB‐MS data, and acid hydrolysis. Inhibitory effects of the four compounds 1 – 4 on the formation of osteoclast‐like multinucleated cells were investigated. As a result, all the four flavanoids showed significant inhibitory effects on the formation of osteoclast‐like multinuclear cells even at a low concentration of 2 μg/ml. The activities of 1 – 4 at such a concentration exceeded or approximated to that of elcitonin, the positive control drug at a concentration of 2 U/ml, suggesting that they may be of interest for the development of new anti‐osteoporosis drugs.  相似文献   

19.
Continually phytochemical study of the roots of Heracleum dissectum had led to the isolation of three previously undescribed polyacetylene glycosides ( 1 – 3 ), together with seven known compounds, including one polyacetylene ( 8 ) and six coumarins ( 4 – 7 and 9 – 10 ) using diverse chromatographic methods. The structures of these three new compounds were characterized and identified as deca‐4,6‐diyn‐1‐yl β‐d ‐glucopyranosyl‐(1→6)‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranoside ( 1 ), (8Z)‐dec‐8‐ene‐4,6‐diyn‐1‐yl β‐d ‐glucopyranosyl‐(1→6)‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranoside ( 2 ), and (8E)‐dec‐8‐ene‐4,6‐diyn‐1‐yl β‐d ‐glucopyranosyl‐(1→6)‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranoside ( 3 ) based on their physicochemical properties and extensive analyses of various spectroscopic data. Their triglycerides accumulating activities were assayed and the results showed that the three new polyacetylene glycosides ( 1 – 3 ) exhibited triglyceride accumulating activities in 3T3‐L1 adipocytes.  相似文献   

20.
Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from Kdaigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 1 ), was isolated from the AcOEt fraction (Kd‐AC). The BuOH‐soluble fraction afforded quercetin 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 2 ) and the new kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside‐7‐Oβ‐d ‐glucopyranoside ( 3 ), named daigremontrioside. The crude extract, Kd‐AC fraction, flavonoids 1 and 2 were evaluated using acyclovir‐sensitive strains of HSV‐1 and HSV‐2. Kd‐AC was highly active against HSV‐1 (EC50 = 0.97 μg/ml, SI > 206.1) and HSV‐2 (EC50 = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti‐HSV‐1 (EC50 = 7.4 μg/ml; SI > 27 and EC50 = 5.8 μg/ml; SI > 8.6, respectively) and anti‐HSV‐2 (EC50 = 9.0 μg/ml; SI > 22.2 and EC50 = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号